Exemplo n.º 1
0
 public void PrintTrainingProgress(Trainer trainer, int minibatchIdx)
 {
     if (trainer.PreviousMinibatchSampleCount() != 0)
     {
         float trainLossValue  = (float)trainer.PreviousMinibatchLossAverage();
         float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage();
         Debug.WriteLine($"Minibatch: {minibatchIdx} CrossEntropyLoss = {trainLossValue}, EvaluationCriterion = {evaluationValue}");
     }
 }
Exemplo n.º 2
0
 public void PrintTrainingProgress(Trainer trainer, int minibatchIdx)
 {
     if (trainer.PreviousMinibatchSampleCount() != 0)
     {
         float trainLossValue  = (float)trainer.PreviousMinibatchLossAverage();
         float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage();
         Debug.WriteLine($"{minibatchIdx};{trainLossValue};{evaluationValue};");
     }
 }
 public static void PrintTrainingProgress(Trainer trainer, int minibatchIdx, int outputFrequencyInMinibatches)
 {
     if ((minibatchIdx % outputFrequencyInMinibatches) == 0 && trainer.PreviousMinibatchSampleCount() != 0)
     {
         float trainLossValue  = (float)trainer.PreviousMinibatchLossAverage();
         float evaluationValue = (float)trainer.PreviousMinibatchEvaluationAverage();
         Console.WriteLine($"Minibatch: {minibatchIdx} CrossEntropyLoss = {trainLossValue}, EvaluationCriterion = {evaluationValue}");
     }
 }
Exemplo n.º 4
0
        private void RunTraining(Trainer trainer, GenericMinibatchSequenceSource minibatchSource, int numMinibatchesToTrain, DeviceDescriptor device)
        {
            double aggregate_metric = 0;

            for (int minibatchCount = 0; minibatchCount < numMinibatchesToTrain; minibatchCount++)
            {
                IDictionary <Variable, MinibatchData> data = minibatchSource.GetNextRandomMinibatch();
                trainer.TrainMinibatch(data, device);

                double samples = trainer.PreviousMinibatchSampleCount();
                double avg     = trainer.PreviousMinibatchEvaluationAverage();
                aggregate_metric += avg * samples;
                double nbSampleSeen = trainer.TotalNumberOfSamplesSeen();
                double train_error  = aggregate_metric / nbSampleSeen;
                Debug.WriteLine($"{minibatchCount} Average training error: {train_error:p2}");
            }
        }