Exemplo n.º 1
0
        internal PositionSolverManifold(ref ContactConstraint cc, int index)
        {
            Debug.Assert(cc.pointCount > 0);

            switch (cc.type)
            {
            case ManifoldType.Circles:
            {
                Vector2 pointA = cc.bodyA.GetWorldPoint(cc.localPoint);
                Vector2 pointB = cc.bodyB.GetWorldPoint(cc.points[0].localPoint);
                if (Vector2.DistanceSquared(pointA, pointB) > Settings.b2_epsilon * Settings.b2_epsilon)
                {
                    _normal = pointB - pointA;
                    _normal.Normalize();
                }
                else
                {
                    _normal = new Vector2(1.0f, 0.0f);
                }

                _point      = 0.5f * (pointA + pointB);
                _separation = Vector2.Dot(pointB - pointA, _normal) - cc.radius;
            }
            break;

            case ManifoldType.FaceA:
            {
                _normal = cc.bodyA.GetWorldVector(cc.localNormal);
                Vector2 planePoint = cc.bodyA.GetWorldPoint(cc.localPoint);

                Vector2 clipPoint = cc.bodyB.GetWorldPoint(cc.points[index].localPoint);
                _separation = Vector2.Dot(clipPoint - planePoint, _normal) - cc.radius;
                _point      = clipPoint;
            }
            break;

            case ManifoldType.FaceB:
            {
                _normal = cc.bodyB.GetWorldVector(cc.localNormal);
                Vector2 planePoint = cc.bodyB.GetWorldPoint(cc.localPoint);

                Vector2 clipPoint = cc.bodyA.GetWorldPoint(cc.points[index].localPoint);
                _separation = Vector2.Dot(clipPoint - planePoint, _normal) - cc.radius;
                _point      = clipPoint;

                // Ensure normal points from A to B
                _normal = -_normal;
            }
            break;

            default:
                _normal     = Vector2.Zero;
                _point      = Vector2.Zero;
                _separation = 0.0f;
                break;
            }
        }
        internal PositionSolverManifold(ref ContactConstraint cc, int index)
        {
            Debug.Assert(cc.pointCount > 0);

            switch (cc.type)
            {
                case ManifoldType.Circles:
                    {
                        Vector2 pointA = cc.bodyA.GetWorldPoint(cc.localPoint);
                        Vector2 pointB = cc.bodyB.GetWorldPoint(cc.points[0].localPoint);
                        if (Vector2.DistanceSquared(pointA, pointB) > Settings.b2_epsilon * Settings.b2_epsilon)
                        {
                            _normal = pointB - pointA;
                            _normal.Normalize();
                        }
                        else
                        {
                            _normal = new Vector2(1.0f, 0.0f);
                        }

                        _point = 0.5f * (pointA + pointB);
                        _separation = Vector2.Dot(pointB - pointA, _normal) - cc.radius;
                    }
                    break;

                case ManifoldType.FaceA:
                    {
                        _normal = cc.bodyA.GetWorldVector(cc.localNormal);
                        Vector2 planePoint = cc.bodyA.GetWorldPoint(cc.localPoint);

                        Vector2 clipPoint = cc.bodyB.GetWorldPoint(cc.points[index].localPoint);
                        _separation = Vector2.Dot(clipPoint - planePoint, _normal) - cc.radius;
                        _point = clipPoint;
                    }
                    break;

                case ManifoldType.FaceB:
                    {
                        _normal = cc.bodyB.GetWorldVector(cc.localNormal);
                        Vector2 planePoint = cc.bodyB.GetWorldPoint(cc.localPoint);

                        Vector2 clipPoint = cc.bodyA.GetWorldPoint(cc.points[index].localPoint);
                        _separation = Vector2.Dot(clipPoint - planePoint, _normal) - cc.radius;
                        _point = clipPoint;

                        // Ensure normal points from A to B
                        _normal = -_normal;
                    }
                    break;
                default:
                    _normal = Vector2.Zero;
                    _point = Vector2.Zero;
                    _separation = 0.0f;
                    break;
            }
        }
Exemplo n.º 3
0
        public void WarmStart()
        {
            // Warm start.
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = _constraints[i];

                Body    bodyA    = c.bodyA;
                Body    bodyB    = c.bodyB;
                float   invMassA = bodyA._invMass;
                float   invIA    = bodyA._invI;
                float   invMassB = bodyB._invMass;
                float   invIB    = bodyB._invI;
                Vector2 normal   = c.normal;

#if MATH_OVERLOADS
                Vector2 tangent = MathUtils.Cross(normal, 1.0f);
#else
                Vector2 tangent = new Vector2(normal.Y, -normal.X);
#endif

                for (int j = 0; j < c.pointCount; ++j)
                {
                    ContactConstraintPoint ccp = c.points[j];
#if MATH_OVERLOADS
                    Vector2 P = ccp.normalImpulse * normal + ccp.tangentImpulse * tangent;
                    bodyA._angularVelocity -= invIA * MathUtils.Cross(ccp.rA, P);
                    bodyA._linearVelocity  -= invMassA * P;
                    bodyB._angularVelocity += invIB * MathUtils.Cross(ccp.rB, P);
                    bodyB._linearVelocity  += invMassB * P;
#else
                    Vector2 P = new Vector2(ccp.normalImpulse * normal.X + ccp.tangentImpulse * tangent.X,
                                            ccp.normalImpulse * normal.Y + ccp.tangentImpulse * tangent.Y);
                    bodyA._angularVelocity  -= invIA * (ccp.rA.X * P.Y - ccp.rA.Y * P.X);
                    bodyA._linearVelocity.X -= invMassA * P.X;
                    bodyA._linearVelocity.Y -= invMassA * P.Y;
                    bodyB._angularVelocity  += invIB * (ccp.rB.X * P.Y - ccp.rB.Y * P.X);
                    bodyB._linearVelocity.X += invMassB * P.X;
                    bodyB._linearVelocity.Y += invMassB * P.Y;
#endif
                    c.points[j] = ccp;
                }

                _constraints[i] = c;
            }
        }
Exemplo n.º 4
0
        public void Report(ContactConstraint[] constraints)
        {
            if (_listener == null)
            {
                return;
            }

            for (int i = 0; i < _contactCount; ++i)
            {
                Contact c = _contacts[i];

                ContactConstraint cc = constraints[i];

                ContactImpulse impulse = new ContactImpulse();
                for (int j = 0; j < cc.pointCount; ++j)
                {
                    impulse.normalImpulses[j]  = cc.points[j].normalImpulse;
                    impulse.tangentImpulses[j] = cc.points[j].tangentImpulse;
                }

                _listener.PostSolve(c, ref impulse);
            }
        }
Exemplo n.º 5
0
        public void StoreImpulses()
        {
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = _constraints[i];
                Manifold          m = c.manifold;

                for (int j = 0; j < c.pointCount; ++j)
                {
                    var pj = m._points[j];
                    var cp = c.points[j];

                    pj.NormalImpulse  = cp.normalImpulse;
                    pj.TangentImpulse = cp.tangentImpulse;

                    m._points[j] = pj;
                }

                // TODO: look for better ways of doing this.
                c.manifold             = m;
                _constraints[i]        = c;
                _contacts[i]._manifold = m;
            }
        }
Exemplo n.º 6
0
        public void Report(ContactConstraint[] constraints)
        {
            if (_listener == null)
            {
                return;
            }

            for (int i = 0; i < _contactCount; ++i)
            {
                Contact c = _contacts[i];

                ContactConstraint cc = constraints[i];

                ContactImpulse impulse = new ContactImpulse();
                for (int j = 0; j < cc.pointCount; ++j)
                {
                    impulse.normalImpulses[j] = cc.points[j].normalImpulse;
                    impulse.tangentImpulses[j] = cc.points[j].tangentImpulse;
                }

                _listener.PostSolve(c, ref impulse);
            }
        }
Exemplo n.º 7
0
        public bool SolvePositionConstraints(float baumgarte)
        {
            float minSeparation = 0.0f;

            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = _constraints[i];

                Body bodyA = c.bodyA;
                Body bodyB = c.bodyB;

                float invMassA = bodyA._mass * bodyA._invMass;
                float invIA    = bodyA._mass * bodyA._invI;
                float invMassB = bodyB._mass * bodyB._invMass;
                float invIB    = bodyB._mass * bodyB._invI;

                // Solve normal constraints
                for (int j = 0; j < c.pointCount; ++j)
                {
                    PositionSolverManifold psm = new PositionSolverManifold(ref c, j);
                    Vector2 normal             = psm._normal;

                    Vector2 point      = psm._point;
                    float   separation = psm._separation;

                    Vector2 rA = point - bodyA._sweep.c;
                    Vector2 rB = point - bodyB._sweep.c;

                    // Track max constraint error.
                    minSeparation = Math.Min(minSeparation, separation);

                    // Prevent large corrections and allow slop.
                    float C = MathUtils.Clamp(baumgarte * (separation + Settings.b2_linearSlop), -Settings.b2_maxLinearCorrection, 0.0f);

                    // Compute the effective mass.
                    float rnA = MathUtils.Cross(rA, normal);
                    float rnB = MathUtils.Cross(rB, normal);
                    float K   = invMassA + invMassB + invIA * rnA * rnA + invIB * rnB * rnB;

                    // Compute normal impulse
                    float impulse = K > 0.0f ? -C / K : 0.0f;

#if MATH_OVERLOADS
                    Vector2 P = impulse * normal;

                    bodyA._sweep.c -= invMassA * P;
                    bodyA._sweep.a -= invIA * MathUtils.Cross(rA, P);

                    bodyB._sweep.c += invMassB * P;
                    bodyB._sweep.a += invIB * MathUtils.Cross(rB, P);
#else
                    Vector2 P = new Vector2(impulse * normal.X, impulse * normal.Y);

                    bodyA._sweep.c.X -= invMassA * P.X;
                    bodyA._sweep.c.Y -= invMassA * P.Y;
                    bodyA._sweep.a   -= invIA * (rA.X * P.Y - rA.Y * P.X);

                    bodyB._sweep.c.X += invMassB * P.X;
                    bodyB._sweep.c.Y += invMassB * P.Y;
                    bodyB._sweep.a   += invIB * (rB.X * P.Y - rB.Y * P.X);
#endif
                    bodyA.SynchronizeTransform();
                    bodyB.SynchronizeTransform();
                }
            }

            // We can't expect minSpeparation >= -Settings.b2_linearSlop because we don't
            // push the separation above -Settings.b2_linearSlop.
            return(minSeparation >= -1.5f * Settings.b2_linearSlop);
        }
Exemplo n.º 8
0
        public void Reset(Contact[] contacts, int contactCount, float impulseRatio)
        {
            _contacts = contacts;

            _constraintCount = contactCount;

            // grow the array
            if (_constraints == null || _constraints.Length < _constraintCount)
            {
                _constraints = new ContactConstraint[_constraintCount * 2];
            }

            for (int i = 0; i < _constraintCount; ++i)
            {
                Contact contact = contacts[i];

                Fixture  fixtureA = contact._fixtureA;
                Fixture  fixtureB = contact._fixtureB;
                Shape    shapeA   = fixtureA.GetShape();
                Shape    shapeB   = fixtureB.GetShape();
                float    radiusA  = shapeA._radius;
                float    radiusB  = shapeB._radius;
                Body     bodyA    = fixtureA.GetBody();
                Body     bodyB    = fixtureB.GetBody();
                Manifold manifold;
                contact.GetManifold(out manifold);

                float friction    = Settings.b2MixFriction(fixtureA.GetFriction(), fixtureB.GetFriction());
                float restitution = Settings.b2MixRestitution(fixtureA.GetRestitution(), fixtureB.GetRestitution());

                Vector2 vA = bodyA._linearVelocity;
                Vector2 vB = bodyB._linearVelocity;
                float   wA = bodyA._angularVelocity;
                float   wB = bodyB._angularVelocity;

                Debug.Assert(manifold._pointCount > 0);

                WorldManifold worldManifold = new WorldManifold(ref manifold, ref bodyA._xf, radiusA, ref bodyB._xf, radiusB);

                ContactConstraint cc = _constraints[i];
                cc.bodyA      = bodyA;
                cc.bodyB      = bodyB;
                cc.manifold   = manifold;
                cc.normal     = worldManifold._normal;
                cc.pointCount = manifold._pointCount;
                cc.friction   = friction;

                cc.localNormal = manifold._localNormal;
                cc.localPoint  = manifold._localPoint;
                cc.radius      = radiusA + radiusB;
                cc.type        = manifold._type;

                for (int j = 0; j < cc.pointCount; ++j)
                {
                    ManifoldPoint          cp  = manifold._points[j];
                    ContactConstraintPoint ccp = cc.points[j];

                    ccp.normalImpulse  = impulseRatio * cp.NormalImpulse;
                    ccp.tangentImpulse = impulseRatio * cp.TangentImpulse;

                    ccp.localPoint = cp.LocalPoint;

                    ccp.rA = worldManifold._points[j] - bodyA._sweep.c;
                    ccp.rB = worldManifold._points[j] - bodyB._sweep.c;

#if MATH_OVERLOADS
                    float rnA = MathUtils.Cross(ccp.rA, cc.normal);
                    float rnB = MathUtils.Cross(ccp.rB, cc.normal);
#else
                    float rnA = ccp.rA.X * cc.normal.Y - ccp.rA.Y * cc.normal.X;
                    float rnB = ccp.rB.X * cc.normal.Y - ccp.rB.Y * cc.normal.X;
#endif
                    rnA *= rnA;
                    rnB *= rnB;

                    float kNormal = bodyA._invMass + bodyB._invMass + bodyA._invI * rnA + bodyB._invI * rnB;

                    Debug.Assert(kNormal > Settings.b2_epsilon);
                    ccp.normalMass = 1.0f / kNormal;

#if MATH_OVERLOADS
                    Vector2 tangent = MathUtils.Cross(cc.normal, 1.0f);

                    float rtA = MathUtils.Cross(ccp.rA, tangent);
                    float rtB = MathUtils.Cross(ccp.rB, tangent);
#else
                    Vector2 tangent = new Vector2(cc.normal.Y, -cc.normal.X);

                    float rtA = ccp.rA.X * tangent.Y - ccp.rA.Y * tangent.X;
                    float rtB = ccp.rB.X * tangent.Y - ccp.rB.Y * tangent.X;
#endif
                    rtA *= rtA;
                    rtB *= rtB;
                    float kTangent = bodyA._invMass + bodyB._invMass + bodyA._invI * rtA + bodyB._invI * rtB;

                    Debug.Assert(kTangent > Settings.b2_epsilon);
                    ccp.tangentMass = 1.0f / kTangent;

                    // Setup a velocity bias for restitution.
                    ccp.velocityBias = 0.0f;
                    float vRel = Vector2.Dot(cc.normal, vB + MathUtils.Cross(wB, ccp.rB) - vA - MathUtils.Cross(wA, ccp.rA));
                    if (vRel < -Settings.b2_velocityThreshold)
                    {
                        ccp.velocityBias = -restitution * vRel;
                    }

                    cc.points[j] = ccp;
                }

                // If we have two points, then prepare the block solver.
                if (cc.pointCount == 2)
                {
                    ContactConstraintPoint ccp1 = cc.points[0];
                    ContactConstraintPoint ccp2 = cc.points[1];

                    float invMassA = bodyA._invMass;
                    float invIA    = bodyA._invI;
                    float invMassB = bodyB._invMass;
                    float invIB    = bodyB._invI;

                    float rn1A = MathUtils.Cross(ccp1.rA, cc.normal);
                    float rn1B = MathUtils.Cross(ccp1.rB, cc.normal);
                    float rn2A = MathUtils.Cross(ccp2.rA, cc.normal);
                    float rn2B = MathUtils.Cross(ccp2.rB, cc.normal);

                    float k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
                    float k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
                    float k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 100.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        cc.K          = new Mat22(new Vector2(k11, k12), new Vector2(k12, k22));
                        cc.normalMass = cc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        cc.pointCount = 1;
                    }
                }

                _constraints[i] = cc;
            }
        }
Exemplo n.º 9
0
        public void SolveVelocityConstraints()
        {
            for (int i = 0; i < _constraintCount; ++i)
            {
                ContactConstraint c = _constraints[i];
                Body    bodyA       = c.bodyA;
                Body    bodyB       = c.bodyB;
                float   wA          = bodyA._angularVelocity;
                float   wB          = bodyB._angularVelocity;
                Vector2 vA          = bodyA._linearVelocity;
                Vector2 vB          = bodyB._linearVelocity;
                float   invMassA    = bodyA._invMass;
                float   invIA       = bodyA._invI;
                float   invMassB    = bodyB._invMass;
                float   invIB       = bodyB._invI;
                Vector2 normal      = c.normal;

#if MATH_OVERLOADS
                Vector2 tangent = ZoomEngine.Physics.Common.Math.Cross(normal, 1.0f);
#else
                Vector2 tangent = new Vector2(normal.Y, -normal.X);
#endif
                float friction = c.friction;

                Debug.Assert(c.pointCount == 1 || c.pointCount == 2);

                // Solve tangent constraints
                for (int j = 0; j < c.pointCount; ++j)
                {
                    ContactConstraintPoint ccp = c.points[j];

#if MATH_OVERLOADS
                    // Relative velocity at contact
                    Vector2 dv = vB + MathUtils.Cross(wB, ccp.rB) - vA - MathUtils.Cross(wA, ccp.rA);

                    // Compute tangent force
                    float vt = Vector2.Dot(dv, tangent);
#else
                    // Relative velocity at contact
                    Vector2 dv = new Vector2(vB.X + (-wB * ccp.rB.Y) - vA.X - (-wA * ccp.rA.Y),
                                             vB.Y + (wB * ccp.rB.X) - vA.Y - (wA * ccp.rA.X));

                    // Compute tangent force
                    float vt = dv.X * tangent.X + dv.Y * tangent.Y;
#endif
                    float lambda = ccp.tangentMass * (-vt);

                    // MathUtils.Clamp the accumulated force
                    float maxFriction = friction * ccp.normalImpulse;
                    float newImpulse  = MathUtils.Clamp(ccp.tangentImpulse + lambda, -maxFriction, maxFriction);
                    lambda = newImpulse - ccp.tangentImpulse;

#if MATH_OVERLOADS
                    // Apply contact impulse
                    Vector2 P = lambda * tangent;

                    vA -= invMassA * P;
                    wA -= invIA * MathUtils.Cross(ccp.rA, P);

                    vB += invMassB * P;
                    wB += invIB * MathUtils.Cross(ccp.rB, P);
#else
                    // Apply contact impulse
                    Vector2 P = new Vector2(lambda * tangent.X, lambda * tangent.Y);

                    vA.X -= invMassA * P.X;
                    vA.Y -= invMassA * P.Y;
                    wA   -= invIA * (ccp.rA.X * P.Y - ccp.rA.Y * P.X);

                    vB.X += invMassB * P.X;
                    vB.Y += invMassB * P.Y;
                    wB   += invIB * (ccp.rB.X * P.Y - ccp.rB.Y * P.X);
#endif
                    ccp.tangentImpulse = newImpulse;
                    c.points[j]        = ccp;
                }

                // Solve normal constraints
                if (c.pointCount == 1)
                {
                    ContactConstraintPoint ccp = c.points[0];

#if MATH_OVERLOADS
                    // Relative velocity at contact
                    Vector2 dv = vB + MathUtils.Cross(wB, ccp.rB) - vA - MathUtils.Cross(wA, ccp.rA);

                    // Compute normal impulse
                    float vn     = Vector2.Dot(dv, normal);
                    float lambda = -ccp.normalMass * (vn - ccp.velocityBias);

                    // MathUtils.Clamp the accumulated impulse
                    float newImpulse = Math.Max(ccp.normalImpulse + lambda, 0.0f);
                    lambda = newImpulse - ccp.normalImpulse;

                    // Apply contact impulse
                    Vector2 P = lambda * normal;
                    vA -= invMassA * P;
                    wA -= invIA * MathUtils.Cross(ccp.rA, P);

                    vB += invMassB * P;
                    wB += invIB * MathUtils.Cross(ccp.rB, P);
#else
                    // Relative velocity at contact
                    Vector2 dv = new Vector2(vB.X + (-wB * ccp.rB.Y) - vA.X - (-wA * ccp.rA.Y),
                                             vB.Y + (wB * ccp.rB.X) - vA.Y - (wA * ccp.rA.X));

                    // Compute normal impulse
                    float vn     = dv.X * normal.X + dv.Y * normal.Y;
                    float lambda = -ccp.normalMass * (vn - ccp.velocityBias);

                    // Clamp the accumulated impulse
                    float newImpulse = Math.Max(ccp.normalImpulse + lambda, 0.0f);
                    lambda = newImpulse - ccp.normalImpulse;

                    // Apply contact impulse
                    var P = new Vector2(lambda * normal.X, lambda * normal.Y);

                    vA.X -= invMassA * P.X;
                    vA.Y -= invMassA * P.Y;
                    wA   -= invIA * (ccp.rA.X * P.Y - ccp.rA.Y * P.X);

                    vB.X += invMassB * P.X;
                    vB.Y += invMassB * P.Y;
                    wB   += invIB * (ccp.rB.X * P.Y - ccp.rB.Y * P.X);
#endif
                    ccp.normalImpulse = newImpulse;
                    c.points[0]       = ccp;
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn_0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = x' - a
                    //
                    // Plug into above equation:
                    //
                    // vn = A * x + b
                    //    = A * (x' - a) + b
                    //    = A * x' + b - A * a
                    //    = A * x' + b'
                    // b' = b - A * a;

                    ContactConstraintPoint cp1 = c.points[0];
                    ContactConstraintPoint cp2 = c.points[1];

                    Vector2 a = new Vector2(cp1.normalImpulse, cp2.normalImpulse);
                    Debug.Assert(a.X >= 0.0f && a.Y >= 0.0f);

#if MATH_OVERLOADS
                    // Relative velocity at contact
                    Vector2 dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);
                    Vector2 dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                    // Compute normal velocity
                    float vn1 = Vector2.Dot(dv1, normal);
                    float vn2 = Vector2.Dot(dv2, normal);

                    Vector2 b = new Vector2(vn1 - cp1.velocityBias, vn2 - cp2.velocityBias);
                    b -= MathUtils.Multiply(ref c.K, a);
#else
                    // Relative velocity at contact
                    Vector2 dv1 = new Vector2(vB.X + (-wB * cp1.rB.Y) - vA.X - (-wA * cp1.rA.Y),
                                              vB.Y + (wB * cp1.rB.X) - vA.Y - (wA * cp1.rA.X));
                    Vector2 dv2 = new Vector2(vB.X + (-wB * cp2.rB.Y) - vA.X - (-wA * cp2.rA.Y),
                                              vB.Y + (wB * cp2.rB.X) - vA.Y - (wA * cp2.rA.X));

                    // Compute normal velocity
                    float vn1 = dv1.X * normal.X + dv1.Y * normal.Y;
                    float vn2 = dv2.X * normal.X + dv2.Y * normal.Y;

                    Vector2 b = new Vector2(vn1 - cp1.velocityBias, vn2 - cp2.velocityBias);
                    b -= MathUtils.Multiply(ref c.K, a); // Inlining didn't help for the multiply.
#endif
                    while (true)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x' + b'
                        //
                        // Solve for x':
                        //
                        // x' = - inv(A) * b'
                        //
                        Vector2 x = -MathUtils.Multiply(ref c.normalMass, b);

                        if (x.X >= 0.0f && x.Y >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            float k_errorTol = 1e-3f;

                            // Postconditions
                            dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);
                            dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn1 = Vector2.Dot(dv1, normal);
                            vn2 = Vector2.Dot(dv2, normal);

                            Debug.Assert(MathUtils.Abs(vn1 - cp1.velocityBias) < k_errorTol);
                            Debug.Assert(MathUtils.Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1' + a12 * 0 + b1'
                        // vn2 = a21 * x1' + a22 * 0 + b2'
                        //
                        x.X = -cp1.normalMass * b.X;
                        x.Y = 0.0f;
                        vn1 = 0.0f;
                        vn2 = c.K.col1.Y * x.X + b.Y;

                        if (x.X >= 0.0f && vn2 >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

        #if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);

                            // Compute normal velocity
                            vn1 = Vector2.Dot(dv1, normal);

                            Debug.Assert(MathUtils.Abs(vn1 - cp1.velocityBias) < k_errorTol);
        #endif
                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2' + b1'
                        //   0 = a21 * 0 + a22 * x2' + b2'
                        //
                        x.X = 0.0f;
                        x.Y = -cp2.normalMass * b.Y;
                        vn1 = c.K.col2.X * x.Y + b.X;
                        vn2 = 0.0f;

                        if (x.Y >= 0.0f && vn1 >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

        #if B2_DEBUG_SOLVER
                            // Postconditions
                            dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn2 = Vector2.Dot(dv2, normal);

                            Debug.Assert(MathUtils.Abs(vn2 - cp2.velocityBias) < k_errorTol);
        #endif
                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = b2;
                        x.X = 0.0f;
                        x.Y = 0.0f;
                        vn1 = b.X;
                        vn2 = b.Y;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
#if MATH_OVERLOADS
                            // Resubstitute for the incremental impulse
                            Vector2 d = x - a;

                            // Apply incremental impulse
                            Vector2 P1 = d.X * normal;
                            Vector2 P2 = d.Y * normal;
                            vA -= invMassA * (P1 + P2);
                            wA -= invIA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2));

                            vB += invMassB * (P1 + P2);
                            wB += invIB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2));
#else
                            // Resubstitute for the incremental impulse
                            Vector2 d = new Vector2(x.X - a.X, x.Y - a.Y);

                            // Apply incremental impulse
                            Vector2 P1  = new Vector2(d.X * normal.X, d.X * normal.Y);
                            Vector2 P2  = new Vector2(d.Y * normal.X, d.Y * normal.Y);
                            Vector2 P12 = new Vector2(P1.X + P2.X, P1.Y + P2.Y);

                            vA.X -= invMassA * P12.X;
                            vA.Y -= invMassA * P12.Y;
                            wA   -= invIA * ((cp1.rA.X * P1.Y - cp1.rA.Y * P1.X) + (cp2.rA.X * P2.Y - cp2.rA.Y * P2.X));

                            vB.X += invMassB * P12.X;
                            vB.Y += invMassB * P12.Y;
                            wB   += invIB * ((cp1.rB.X * P1.Y - cp1.rB.Y * P1.X) + (cp2.rB.X * P2.Y - cp2.rB.Y * P2.X));
#endif
                            // Accumulate
                            cp1.normalImpulse = x.X;
                            cp2.normalImpulse = x.Y;

                            break;
                        }

                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }

                    c.points[0] = cp1;
                    c.points[1] = cp2;
                }

                _constraints[i] = c;

                bodyA._linearVelocity  = vA;
                bodyA._angularVelocity = wA;
                bodyB._linearVelocity  = vB;
                bodyB._angularVelocity = wB;
            }
        }