Exemplo n.º 1
0
 /// <summary>
 /// Initializes a new instance of the <see cref="ActivationNetwork"/> class.
 /// </summary>
 /// 
 /// <param name="function">Activation function of neurons of the network.</param>
 /// <param name="inputsCount">Network's inputs count.</param>
 /// <param name="neuronsCount">Array, which specifies the amount of neurons in
 /// each layer of the neural network.</param>
 /// 
 /// <remarks>The new network is randomized (see <see cref="ActivationNeuron.Randomize"/>
 /// method) after it is created.</remarks>
 /// 
 public ActivationNetwork( IActivationFunction function, int inputsCount, params int[] neuronsCount )
     : base( inputsCount, neuronsCount.Length )
 {
     // create each layer
     for ( int i = 0; i < layers.Length; i++ )
     {
         layers[i] = new ActivationLayer(
             // neurons count in the layer
             neuronsCount[i],
             // inputs count of the layer
             ( i == 0 ) ? inputsCount : neuronsCount[i - 1],
             // activation function of the layer
             function );
     }
 }
Exemplo n.º 2
0
 /// <summary>
 /// Initializes a new instance of the <see cref="ActivationNetwork"/> class.
 /// </summary>
 ///
 /// <param name="function">Activation function of neurons of the network.</param>
 /// <param name="inputsCount">Network's inputs count.</param>
 /// <param name="neuronsCount">Array, which specifies the amount of neurons in
 /// each layer of the neural network.</param>
 ///
 /// <remarks>The new network is randomized (see <see cref="ActivationNeuron.Randomize"/>
 /// method) after it is created.</remarks>
 ///
 public ActivationNetwork(IActivationFunction function, int inputsCount, params int[] neuronsCount)
     : base(inputsCount, neuronsCount.Length)
 {
     // create each layer
     for (int i = 0; i < layers.Length; i++)
     {
         layers[i] = new ActivationLayer(
             // neurons count in the layer
             neuronsCount[i],
             // inputs count of the layer
             (i == 0) ? inputsCount : neuronsCount[i - 1],
             // activation function of the layer
             function);
     }
 }