Exemplo n.º 1
0
        public Data(StreamReader r1, StreamReader r2, int epochs, double learning_rate, Random r, bool DymanicLearningRate, double margin, bool Average, bool Aggressive)
        {
            double[]   w_average = new double[68];
            double     b_average;
            WeightBias wb_average = null;

            if (Average)
            {
                for (int i = 0; i < 68; i++)
                {
                    double randomNumber = (r.NextDouble() * (0.01 + 0.01) - 0.01);
                    w_average[i] = randomNumber;
                }
                b_average  = (r.NextDouble() * (0.01 + 0.01) - 0.01);
                wb_average = new WeightBias(w_average, b_average, 0);
            }


            Training_Data   = new List <Entry>();
            Test_Data       = new List <Entry>();
            AccuracyWeightB = new Dictionary <int, AccuracyWB>();

            SetData(r1, r2);
            perceptron = new Perceptron(Training_Data, Test_Data, learning_rate, DymanicLearningRate, margin, wb_average, Aggressive);
            double[] w = new double[68];
            double   b = (r.NextDouble() * (0.01 + 0.01) - 0.01);

            for (int i = 0; i < 68; i++)
            {
                double randomNumber = (r.NextDouble() * (0.01 + 0.01) - 0.01);
                w[i] = randomNumber;
            }
            WeightBias wb = new WeightBias(w, b, 0);

            for (int i = 0; i < epochs; i++)
            {
                wb = perceptron.CalculateWB(wb);
                if (Average)
                {
                    perceptron.WeightBias_Average.Updates = wb.Updates;
                    AccuracyWeightB.Add(i + 1, new AccuracyWB(perceptron.GetAccuracy(Test_Data, perceptron.WeightBias_Average), perceptron.WeightBias_Average));
                }
                else
                {
                    AccuracyWeightB.Add(i + 1, new AccuracyWB(perceptron.GetAccuracy(Test_Data, wb), wb));
                }
                perceptron.ShuffleTraining_Data(r);
            }
            //foreach (var item in AccuracyWeightB)
            //{
            //    Console.WriteLine(item.Value.Accuracy);
            //}
            AccuracyWB bestAccuracy = AccuracyWeightB.OrderByDescending(x => x.Value.Accuracy).ThenByDescending(y => y.Key).Select(z => z.Value).First();


            Accuracy       = bestAccuracy.Accuracy;
            BestWeightBias = bestAccuracy.Weight_Bias;
            Learning_Rate  = learning_rate;
            //Console.WriteLine("\n" + Accuracy);
        }
Exemplo n.º 2
0
        public Data(StreamReader r1, StreamReader r2, Random r, int epochs, double learning_rate, double margin, double c, bool logistic_regression, double tradeoff)
        {
            C               = c;
            Tradeoff        = tradeoff;
            Training_Data   = new List <Entry>();
            Test_Data       = new List <Entry>();
            AccuracyWeightB = new Dictionary <int, AccuracyWB>();
            SetData(r1, r2);
            perceptron = new Perceptron(Training_Data, Test_Data, learning_rate, margin, C, logistic_regression, Tradeoff, r);

            Dictionary <int, double> w = new Dictionary <int, double>();
            double b = (r.NextDouble() * (0.01 + 0.01) - 0.01);
            //for (int i = 1; i < 67693; i++)
            //{
            //    double randomNumber = (r.NextDouble() * (0.01 + 0.01) - 0.01);
            //    if (randomNumber != 0)
            //    {
            //        w.Add(i, randomNumber);
            //    }
            //}

            WeightBias wb = new WeightBias(w, b, 0);

            for (int i = 0; i < epochs; i++)
            {
                wb = perceptron.CalculateWB(wb);
                AccuracyWeightB.Add(i + 1, new AccuracyWB(perceptron.GetAccuracy(Test_Data, wb), wb));
                perceptron.ShuffleTraining_Data(r);
            }
            AccuracyWB bestAccuracy = AccuracyWeightB.OrderByDescending(x => x.Value.Accuracy).ThenByDescending(y => y.Key).Select(z => z.Value).First();

            Training_Accuracy = perceptron.GetAccuracy(Training_Data, bestAccuracy.Weight_Bias); //Train Accuracy
            Accuracy          = bestAccuracy.Accuracy;                                           //Test Accuracy
            BestWeightBias    = bestAccuracy.Weight_Bias;
            Learning_Rate     = learning_rate;
        }