Exemplo n.º 1
0
        public void do_random_forest_analyse(IClassifierML rg, Func <double[], IFunction, Grid, double[], double[][], int, double[]> build_features)
        {
            int[] count = new int[N]; for (int i = 0; i < N; i++)
            {
                count[i] = (Min[i] == Max[i]) ? 1 : NGRID;
            }
            create_grid(count);
            analyse_voronoi();

            //int n = candidates.Length;
            int n = grid.Node.Length;

            LabeledData[] ldata = new LabeledData[n];

            for (int i = 0; i < grid.Node.Length; i++)
            {
                ldata[i] = new LabeledData(build_features(grid.Node[i], this.func, grid, this.dist, xf, i), 0);
            }

            candidates = new int[grid.Node.Length];

            List <Tuple <double, int> > improveDiffs = new List <Tuple <double, int> >();

            for (int i = 0; i < grid.Node.Length; ++i)
            {
                Object dist;
                rg.infer(ldata[i].data, out dist);
                improveDiffs.Add(new Tuple <double, int>(Convert.ToDouble(dist), i));
            }

            var sortedImproveDiffs = improveDiffs.OrderByDescending((t) => t.Item1).ToList();

            for (int i = 0; i < grid.Node.Length; i++)
            {
                candidates[i] = sortedImproveDiffs[i].Item2;
            }

            xfcandidates = Tools.Sub(grid.Node, candidates);
        }
Exemplo n.º 2
0
        public void do_random_forest_analyse(IClassifierML cls, double allowErr, Func <double[], double> meFunc, Func <double[], double[]> calcDerivative)
        {
            int[] count = new int[N]; for (int i = 0; i < N; i++)
            {
                count[i] = (Min[i] == Max[i]) ? 1 : NGRID;
            }
            create_grid(count);
            analyse_voronoi();
            analyse_all_error();

            int n = grid.Node.Length;

            LabeledData[] ldata        = new LabeledData[n];
            LabeledData[] ldata1       = new LabeledData[n];
            int           featureCount = 0;

            for (int i = 0; i < n; i++)
            {
                // min, max in locality
                double maxNeighbours = double.MinValue;
                double minNeighbours = double.MaxValue;
                foreach (var neighbour in grid.Neighbours(i))
                //foreach (var neighbour in grid.Neighbours(i))
                {
                    double[] calcNeighbour = (double[])grid.Node[neighbour].Clone();
                    this.func.Calculate(calcNeighbour);
                    if (calcNeighbour[calcNeighbour.Length - 1] < minNeighbours)
                    {
                        minNeighbours = calcNeighbour[calcNeighbour.Length - 1];
                    }
                    if (calcNeighbour[calcNeighbour.Length - 1] > maxNeighbours)
                    {
                        maxNeighbours = calcNeighbour[calcNeighbour.Length - 1];
                    }
                }
                // current val
                double[] cuurentNode = (double[])grid.Node[i].Clone();
                this.func.Calculate(cuurentNode);
                double cuurentNodeVal = cuurentNode[cuurentNode.Length - 1];
                if (cuurentNodeVal < minNeighbours)
                {
                    minNeighbours = cuurentNodeVal;
                }
                if (cuurentNodeVal > maxNeighbours)
                {
                    maxNeighbours = cuurentNodeVal;
                }

                // is real function and approximation are equal, class for point
                int pointClass = 0;
                if (Math.Abs(meFunc(grid.Node[i]) - cuurentNodeVal) > allowErr)
                {
                    pointClass = 1;
                }

                //derivative
                double[] derivative = calcDerivative(grid.Node[i]);

                // build features vector
                double[] features = new double[2];
                features[0] = Math.Abs(cuurentNodeVal - maxNeighbours);
                features[1] = Math.Abs(minNeighbours - cuurentNodeVal);

                ldata[i]     = new LabeledData(features, 0);
                ldata1[i]    = new LabeledData(features, pointClass);
                featureCount = features.Length;
            }
            List <int> newCandidates = new List <int>();

            Object[] y = new Object[ldata.Length];
            for (int i = 0; i < ldata.Length; i++)
            {
                cls.infer(ldata[i].data, out y[i]);
                if ((int)y[i] == 1)
                {
                    newCandidates.Add(i);
                }
            }
            candidates = newCandidates.ToArray();

            xfcandidates = Tools.Sub(grid.Node, candidates);
        }