private static List <ConversationInput> LoadFromXml()
        {
            var result   = new List <ConversationInput>();
            var document = new XmlDocument();

            document.Load("questions.xml");
            var posts = document.LastChild.LastChild.ChildNodes;
            int i     = 0;

            foreach (XmlNode post in posts)
            {
                try
                {
                    i++;
                    var inputRow = new ConversationInput();
                    inputRow.Description = post.FirstChild.Value;
                    inputRow.Area        = post.Attributes["class"].Value;
                    //inputRow.Title = post.FirstChild.Value;
                    //inputRow.ClassificationOutput = (uint) (post.Attributes["class"].Value.Contains("Question") ? 1 : 0);
                    result.Add(inputRow);
                }
                catch (Exception)
                {
                }
                if (i == 1000)
                {
                    break;
                }
            }

            return(result);
        }
        public static void PredictIssue()
        {
            // <SnippetLoadModel>
            ITransformer loadedModel = _mlContext.Model.Load(_modelPath, out var modelInputSchema);
            // </SnippetLoadModel>

            // <SnippetAddTestIssue>
            ConversationInput singleIssue = new ConversationInput()
            {
                Description = "When connecting to the database, EF is crashing"
            };

            //ConversationInput singleIssue = new ConversationInput() { Description = "What is your name"};
            // </SnippetAddTestIssue>

            //Predict label for single hard-coded issue
            // <SnippetCreatePredictionEngine>
            _predEngine = _mlContext.Model.CreatePredictionEngine <ConversationInput, SentenceClassifiedOutput>(loadedModel);
            // </SnippetCreatePredictionEngine>

            // <SnippetPredictIssue>
            var prediction = _predEngine.Predict(singleIssue);
            // </SnippetPredictIssue>

            // <SnippetDisplayResults>
            //Console.WriteLine($"=============== Single Prediction - Result: {prediction.Area} ===============");
            // </SnippetDisplayResults>
        }
Exemplo n.º 3
0
        private void btnTestSentence_Click(object sender, EventArgs e)
        {
            var          _mlContext    = new MLContext(seed: 0);
            ITransformer _trainedModel = _mlContext.Model.Load("model.zip", out DataViewSchema inputSchema);
            PredictionEngine <ConversationInput, SentenceClassifiedOutput> _predEngine = _mlContext.Model.CreatePredictionEngine <ConversationInput, SentenceClassifiedOutput>(_trainedModel);

            ConversationInput issue = new ConversationInput()
            {
                Description = txtInput.Text
            };
            var prediction = _predEngine.Predict(issue);

            txtOutPut.Text = prediction.Area;
        }
        public static IEstimator <ITransformer> BuildAndTrainModel(IDataView trainingDataView, IEstimator <ITransformer> pipeline)
        {
            // STEP 3: Create the training algorithm/trainer
            // Use the multi-class SDCA algorithm to predict the label using features.
            //Set the trainer/algorithm and map label to value (original readable state)
            // <SnippetAddTrainer>
            var trainingPipeline = pipeline.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy("Label", "Features"))
                                   .Append(_mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));

            // </SnippetAddTrainer>

            // STEP 4: Train the model fitting to the DataSet
            //Console.WriteLine($"=============== Training the model  ===============");

            // <SnippetTrainModel>
            _trainedModel = trainingPipeline.Fit(trainingDataView);
            // </SnippetTrainModel>
            //Console.WriteLine($"=============== Finished Training the model Ending time: {DateTime.Now.ToString()} ===============");

            // (OPTIONAL) Try/test a single prediction with the "just-trained model" (Before saving the model)
            //Console.WriteLine($"=============== Single Prediction just-trained-model ===============");

            // Create prediction engine related to the loaded trained model
            // <SnippetCreatePredictionEngine1>
            _predEngine = _mlContext.Model.CreatePredictionEngine <ConversationInput, SentenceClassifiedOutput>(_trainedModel);
            // </SnippetCreatePredictionEngine1>
            // <SnippetCreateTestIssue1>
            ConversationInput issue = new ConversationInput()
            {
                //Title = "WebSockets communication is slow in my machine",
                Description = "The WebSockets communication used under the covers by SignalR looks like is going slow in my development machine.."
            };
            // </SnippetCreateTestIssue1>

            // <SnippetPredict>
            var prediction = _predEngine.Predict(issue);

            // </SnippetPredict>

            // <SnippetOutputPrediction>
            //Console.WriteLine($"=============== Single Prediction just-trained-model - Result: {prediction.Area} ===============");
            // </SnippetOutputPrediction>

            // <SnippetReturnModel>
            return(trainingPipeline);
            // </SnippetReturnModel>
        }