Exemplo n.º 1
0
        public static Tuple <bool, bool, bool> GetDataSetAviability(string mlConfigPath)
        {
            try
            {
                //Load ML model configuration file
                var dicMParameters = MLFactory.LoadMLConfiguration(mlConfigPath);
                //add full path of model folder since model file doesn't contains any absolute path
                dicMParameters.Add("root", MLFactory.GetMLConfigFolder(mlConfigPath));

                //get model daa paths
                var dicPath    = MLFactory.GetMLConfigComponentPaths(dicMParameters["paths"]);
                var training   = dicPath["Training"] != " ";
                var validation = dicPath["Validation"] != " ";
                var test       = dicPath["Test"] != " ";
                return(new Tuple <bool, bool, bool>(training, validation, test));
            }
            catch (Exception)
            {
                throw;
            }
        }
Exemplo n.º 2
0
        public static string GetMLConfigId(string mlconfigPath)
        {
            try
            {
                //Load ML configuration file
                var dicMParameters = MLFactory.LoadMLConfiguration(mlconfigPath);

                if (dicMParameters.ContainsKey("configid"))
                {
                    return(dicMParameters["configid"].Trim(' '));
                }
                else
                {
                    return(null);
                }
            }
            catch (Exception)
            {
                throw;
            }
        }
Exemplo n.º 3
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="trData"></param>
 /// <param name="bestModelFile"></param>
 /// <returns></returns>
 public static string ReplaceBestModel(TrainingParameters trData, string mlconfigPath, string bestModelFile)
 {
     try
     {
         if (!string.IsNullOrEmpty(trData.LastBestModel) && trData.LastBestModel != " ")
         {
             var mlconfigFolder = MLFactory.GetMLConfigFolder(mlconfigPath);
             var oldPath        = Path.Combine(mlconfigFolder, trData.LastBestModel);
             //delete history
             if (File.Exists(oldPath))
             {
                 File.Delete(oldPath);
             }
         }
         //set new value after delete old model
         trData.LastBestModel = bestModelFile;
         return(bestModelFile);
     }
     catch (Exception)
     {
         throw;
     }
 }
Exemplo n.º 4
0
        /// <summary>
        /// Parses the mlconfig content and return dictionary of the model components
        /// </summary>
        /// <param name="pathsString"></param>
        /// <returns></returns>
        public static Dictionary <string, string> GetMLConfigComponentPaths(string pathsString)
        {
            var dicValues = new Dictionary <string, string>();
            //parse feature variables
            var pathsValues = pathsString.Split(m_cntkSpearator, StringSplitOptions.RemoveEmptyEntries);
            //training path
            var val = MLFactory.GetParameterValue(pathsValues, "Training");

            if (string.IsNullOrEmpty(val))
            {
                throw new Exception("One of model paths (Training) is not defined!");
            }
            dicValues.Add("Training", val);

            val = MLFactory.GetParameterValue(pathsValues, "Validation");
            if (string.IsNullOrEmpty(val))
            {
                dicValues.Add("Validation", " ");
            }
            else
            {
                dicValues.Add("Validation", val);
            }

            val = MLFactory.GetParameterValue(pathsValues, "Test");
            if (string.IsNullOrEmpty(val))
            {
                dicValues.Add("Test", " ");
            }
            else
            {
                dicValues.Add("Test", val);
            }

            val = MLFactory.GetParameterValue(pathsValues, "TempModels");
            if (string.IsNullOrEmpty(val))
            {
                throw new Exception("One of model paths (TempModels) is not defined!");
            }
            dicValues.Add("TempModels", val);
            val = MLFactory.GetParameterValue(pathsValues, "Models");
            if (string.IsNullOrEmpty(val))
            {
                throw new Exception("One of model paths (Models) is not defined!");
            }
            dicValues.Add("Models", val);
            val = MLFactory.GetParameterValue(pathsValues, "Result");
            if (string.IsNullOrEmpty(val))
            {
                throw new Exception("One of model paths (Result) is not defined!");
            }
            dicValues.Add("Result", val);
            val = MLFactory.GetParameterValue(pathsValues, "Logs");
            if (string.IsNullOrEmpty(val))
            {
                throw new Exception("One of model paths (Log) is not defined!");
            }
            dicValues.Add("Logs", val);

            return(dicValues);
        }
Exemplo n.º 5
0
        /// <summary>
        /// Test cntk model stored at 'modelPath' against array of image paths
        /// </summary>
        /// <param name="modelPath"></param>
        /// <param name="vector"></param>
        /// <param name="device"></param>
        /// <returns></returns>
        public static List <int> TestModel(string modelPath, string[] imagePaths, DeviceDescriptor device)
        {
            try
            {
                //
                FileInfo fi = new FileInfo(modelPath);
                if (!fi.Exists)
                {
                    throw new Exception($"The '{fi.FullName}' does not exist. Make sure the model is places at this location.");
                }

                //load the model from disk
                var model = Function.Load(fi.FullName, device);
                //get input feature
                var features     = model.Arguments.ToList();
                var labels       = model.Outputs.ToList();
                var stremsConfig = MLFactory.CreateStreamConfiguration(features, labels);
                var mapFile      = "testMapFile";
                File.WriteAllLines(mapFile, imagePaths.Select(x => $"{x}\t0"));

                var testMB = new MinibatchSourceEx(MinibatchType.Image, stremsConfig.ToArray(), features, labels, mapFile, null, 30, false, 0);

                //
                var vars   = features.Union(labels).ToList();
                var retVal = new List <int>();
                var mbSize = imagePaths.Count();
                if (mbSize > 30)
                {
                    mbSize = 30;
                }
                while (true)
                {
                    bool isSweepEnd = false;
                    var  inputMap   = testMB.GetNextMinibatch((uint)mbSize, ref isSweepEnd, vars, device);
                    //prepare data for trainer
                    //var inputMap = new Dictionary<Variable, Value>();
                    //inputMap.Add(features.First(), nextMB.Where(x => x.Key.m_name.Equals(features.First().Name)).Select(x => x.Value.data).FirstOrDefault());


                    var outputMap = new Dictionary <Variable, Value>();
                    outputMap.Add(labels.First(), null);
                    //evaluate model
                    model.Evaluate(inputMap, outputMap, device);
                    var result = outputMap[labels.First()].GetDenseData <float>(labels.First());

                    //extract result
                    foreach (var r in result)
                    {
                        var l = MLValue.GetResult(r);
                        retVal.Add((int)l);
                    }

                    if (/*nextMB.Any(x => x.Value.sweepEnd)*/ isSweepEnd)
                    {
                        break;
                    }
                }


                return(retVal);
            }
            catch (Exception)
            {
                throw;
            }
        }
Exemplo n.º 6
0
        /// <summary>
        /// Evaluate model defined in the mlconfig file
        /// </summary>
        /// <param name="mlconfigPath"></param>
        /// <param name="device"></param>
        /// <returns></returns>
        public static async Task <EvaluationResult> EvaluateMLConfig(string mlconfigPath, DeviceDescriptor device, DataSetType dsType, EvaluationType evType)
        {
            try
            {
                //define eval result
                var er = new EvaluationResult();
                er.OutputClasses = new List <string>()
                {
                    ""
                };
                er.Actual    = new List <float>();
                er.Predicted = new List <float>();
                er.Header    = new List <string>();

                //Load ML configuration file
                var dicMParameters = MLFactory.LoadMLConfiguration(mlconfigPath);
                //add full path of model folder since model file doesn't contains any absolute path
                dicMParameters.Add("root", MLFactory.GetMLConfigFolder(mlconfigPath));

                // get model data paths
                var dicPath = MLFactory.GetMLConfigComponentPaths(dicMParameters["paths"]);
                //parse feature variables
                var projectValues = dicMParameters["training"].Split(MLFactory.m_cntkSpearator, StringSplitOptions.RemoveEmptyEntries);
                var modelName     = MLFactory.GetParameterValue(projectValues, "TrainedModel");
                var nnModelPath   = Path.Combine(dicMParameters["root"], modelName);
                //check if model exists
                if (!MLFactory.IsFileExist(nnModelPath))
                {
                    return(er);
                }
                //
                var dataset = MLFactory.GetDataPath(dicMParameters, dsType);
                if (string.IsNullOrEmpty(dataset) || string.IsNullOrEmpty(dataset) || dataset == " ")
                {
                    if (dsType == DataSetType.Testing)
                    {
                        dataset = MLFactory.GetDataPath(dicMParameters, DataSetType.Validation);
                    }
                    if (string.IsNullOrEmpty(dataset) || string.IsNullOrEmpty(dataset) || dataset == " ")
                    {
                        return(er);
                    }
                }


                //get output classes in case the ml problem is classification
                var strCls = dicMParameters.ContainsKey("metadata") ? dicMParameters["metadata"] : "";
                var oc     = MLFactory.GetOutputClasses(strCls);
                if (oc != null)
                {
                    er.OutputClasses = oc;
                }

                //MInibatch
                var           mbTypestr = MLFactory.GetParameterValue(projectValues, "Type");
                MinibatchType mbType    = (MinibatchType)Enum.Parse(typeof(MinibatchType), mbTypestr, true);
                var           mbSizetr  = MLFactory.GetParameterValue(projectValues, "BatchSize");

                var mf = MLFactory.CreateMLFactory(dicMParameters);


                //perform evaluation
                var evParams = new EvaluationParameters()
                {
                    MinibatchSize = uint.Parse(mbSizetr),
                    MBSource      = new MinibatchSourceEx(mbType, mf.StreamConfigurations.ToArray(), mf.InputVariables, mf.OutputVariables, dataset, null, MinibatchSource.FullDataSweep, false, 0),
                    Input         = mf.InputVariables,
                    Ouptut        = mf.OutputVariables,
                };

                //evaluate model
                if (evType == EvaluationType.FeaturesOnly)
                {
                    if (!dicMParameters.ContainsKey("metadata"))
                    {
                        throw new Exception("The result cannot be exported to Excel, since no metadata is stored in mlconfig file.");
                    }

                    var desc = MLFactory.ParseRawDataSet(dicMParameters["metadata"]);
                    er.Header = MLFactory.GenerateHeader(desc);
                    var fun = Function.Load(nnModelPath, device);
                    //
                    er.DataSet = await Task.Run(() => MLEvaluator.FeaturesAndLabels(fun, evParams, device));

                    return(er);
                }
                else if (evType == EvaluationType.Results)
                {
                    //define header
                    er.Header.Add(evParams.Ouptut.First().Name + "_actual");
                    er.Header.Add(evParams.Ouptut.First().Name + "_predicted");

                    var fun = Function.Load(nnModelPath, device);
                    //
                    var result = await Task.Run(() => MLEvaluator.EvaluateFunction(fun, evParams, device));

                    er.Actual    = result.actual.ToList();
                    er.Predicted = result.predicted.ToList();

                    if (er.OutputClasses.Count < 2 && evParams.Ouptut.First().Shape.Dimensions.Last() > 1)
                    {
                        var result1 = await Task.Run(() => MLEvaluator.EvaluateFunctionEx(fun, evParams, device));

                        er.ActualEx    = result1.actual;
                        er.PredictedEx = result1.predicted;
                    }
                    return(er);
                }
                else if (evType == EvaluationType.ResultExtended)
                {
                    //define header
                    er.Header.Add(evParams.Ouptut.First().Name + "_actual");
                    er.Header.Add(evParams.Ouptut.First().Name + "_predicted");
                    er.Actual      = new List <float>();
                    er.Predicted   = new List <float>();
                    er.ActualEx    = new List <List <float> >();
                    er.PredictedEx = new List <List <float> >();

                    //
                    var fun      = Function.Load(nnModelPath, device);
                    var resultEx = await Task.Run(() => MLEvaluator.EvaluateFunctionEx(fun, evParams, device));

                    //var resultEx = EvaluateFunctionEx(nnModelPath, dataPath, evParams, device);
                    for (int i = 0; i < resultEx.actual.Count(); i++)
                    {
                        var res1 = MLValue.GetResult(resultEx.actual[i]);
                        er.Actual.Add(res1);
                        var res2 = MLValue.GetResult(resultEx.predicted[i]);
                        er.Predicted.Add(res2);
                    }
                    er.ActualEx    = resultEx.actual;
                    er.PredictedEx = resultEx.predicted;

                    return(er);
                }
                else
                {
                    throw new Exception("Unknown evaluation type!");
                }
            }
            catch (Exception)
            {
                throw;
            }
        }
Exemplo n.º 7
0
        /// <summary>
        /// Main method for training
        /// </summary>
        /// <param name="trainer"></param>
        /// <param name="network"></param>
        /// <param name="trParams"></param>
        /// <param name="miniBatchSource"></param>
        /// <param name="device"></param>
        /// <param name="token"></param>
        /// <param name="progress"></param>
        /// <param name="modelCheckPoint"></param>
        /// <returns></returns>
        public override TrainResult Train(Trainer trainer, Function network, TrainingParameters trParams,
                                          MinibatchSourceEx miniBatchSource, DeviceDescriptor device, CancellationToken token, TrainingProgress progress, string modelCheckPoint, string historyPath)
        {
            try
            {
                //create trainer result.
                // the variable indicate how training process is ended
                // completed, stopped, crashed,
                var trainResult = new TrainResult();
                var historyFile = "";
                //create training process evaluation collection
                //for each iteration it is stored evaluationValue for training, and validation set with the model
                m_ModelEvaluations = new List <Tuple <double, double, string> >();

                //check what is the optimization (Minimization (error) or maximization (accuracy))
                bool isMinimize = StatMetrics.IsGoalToMinimize(trainer.EvaluationFunction());

                //setup first iteration
                if (m_trainingHistory == null)
                {
                    m_trainingHistory = new List <Tuple <int, float, float, float, float> >();
                }
                //in case of continuation of training iteration must start with the last of path previous training process
                int epoch = (m_trainingHistory.Count > 0)? m_trainingHistory.Last().Item1 + 1:1;

                //define progressData
                ProgressData prData = null;

                //define helper variable collection
                var vars = InputVariables.Union(OutputVariables).ToList();

                //training process
                while (true)
                {
                    //get next mini batch data
                    //var args = miniBatchSource.GetNextMinibatch(trParams.BatchSize, device);
                    //var isSweepEnd = args.Any(a => a.Value.sweepEnd);
                    ////prepare the data for trainer
                    //var arguments = MinibatchSourceEx.ToMinibatchValueData(args, vars);
                    //
                    var isSweepEnd = false;
                    var arguments  = miniBatchSource.GetNextMinibatch(trParams.BatchSize, ref isSweepEnd, vars, device);
                    trainer.TrainMinibatch(arguments, isSweepEnd, device);

                    //make progress
                    if (isSweepEnd)
                    {
                        //check the progress of the training process
                        prData = progressTraining(trParams, trainer, network, miniBatchSource, epoch, progress, device);

                        //check if training process ends
                        if (epoch >= trParams.Epochs)
                        {
                            //save training checkpoint state
                            if (!string.IsNullOrEmpty(modelCheckPoint))
                            {
                                trainer.SaveCheckpoint(modelCheckPoint);
                            }

                            //save training history
                            if (!string.IsNullOrEmpty(historyPath))
                            {
                                string header = $"{trainer.LossFunction().Name};{trainer.EvaluationFunction().Name};";
                                MLFactory.SaveTrainingHistory(m_trainingHistory, header, historyPath);
                            }

                            //save best or last trained model and send report last time before trainer completes
                            var bestModelPath = saveBestModel(trParams, trainer.Model(), epoch, isMinimize);
                            //
                            if (progress != null)
                            {
                                progress(prData);
                            }
                            //
                            trainResult.Iteration           = epoch;
                            trainResult.ProcessState        = ProcessState.Compleated;
                            trainResult.BestModelFile       = bestModelPath;
                            trainResult.TrainingHistoryFile = historyFile;
                            break;
                        }
                        else
                        {
                            epoch++;
                        }
                    }
                    //stop in case user request it
                    if (token.IsCancellationRequested)
                    {
                        if (!string.IsNullOrEmpty(modelCheckPoint))
                        {
                            trainer.SaveCheckpoint(modelCheckPoint);
                        }

                        //save training history
                        if (!string.IsNullOrEmpty(historyPath))
                        {
                            string header = $"{trainer.LossFunction().Name};{trainer.EvaluationFunction().Name};";
                            MLFactory.SaveTrainingHistory(m_trainingHistory, header, historyPath);
                        }

                        //sometime stopping training process can be before first epoch passed so make a incomplete progress
                        if (prData == null)//check the progress of the training process
                        {
                            prData = progressTraining(trParams, trainer, network, miniBatchSource, epoch, progress, device);
                        }

                        //save best or last trained model and send report last time before trainer terminates
                        var bestModelPath = saveBestModel(trParams, trainer.Model(), epoch, isMinimize);
                        //
                        if (progress != null)
                        {
                            progress(prData);
                        }

                        //setup training result
                        trainResult.Iteration           = prData.EpochCurrent;
                        trainResult.ProcessState        = ProcessState.Stopped;
                        trainResult.BestModelFile       = bestModelPath;
                        trainResult.TrainingHistoryFile = historyFile;
                        break;
                    }
                }

                return(trainResult);
            }
            catch (Exception ex)
            {
                var ee = ex;
                throw;
            }
            finally
            {
            }
        }