Exemplo n.º 1
0
        public static void Teach(object A)
        {
            Between B = (Between)A;

            do
            {
                int curAnswer = MathAI.GetRandom(0, nElements - 1);
                //Console.WriteLine(curAnswer + " " + B.nFiles[curAnswer]);
                int         curDigitVar = MathAI.GetRandom(0, B.nFiles[curAnswer] - 1);
                Digit       curDigit    = B.Digits[curAnswer, curDigitVar];
                FirstLayer  Layer1      = new FirstLayer(curDigit, dimHiddenLayer, B.Weights1);
                SecondLayer Layer2      = new SecondLayer(Layer1, nElements, B.Weights2, curAnswer);
                lock (locker)
                {
                    iteration++;
                    Epoch = iteration / B.nFilesFull + 1;
                    if ((Convert.ToDouble(iteration) - Convert.ToDouble((Epoch - 1) * B.nFilesFull)) != 0)
                    {
                        testdel = (Convert.ToDouble(iteration) - Convert.ToDouble((Epoch - 1) * B.nFilesFull));
                    }

                    if (iteration % 2000 == 0)
                    {
                        Console.WriteLine("Epoch #" + Epoch + " | Theard #" + Thread.CurrentThread.Name);
                        Console.WriteLine("Answer = " + (curAnswer));
                        Console.WriteLine("Full Error = " + (Weight.fError));
                        Console.WriteLine("Accuration = " + Layer2.ResultAccuracy * 100 + "%");
                        Console.WriteLine("Epoch Accuration = " + averageEpochAccuracy / (testdel) * 100 + "%");
                    }
                    Weight.Correct(Layer1, Layer2, B.Weights1, B.Weights2, curAnswer, nElements, dimHiddenLayer, LearningRate);
                    if (iteration % B.nFilesFull == 0)
                    {
                        averageEpochAccuracy = 0;
                    }
                    averageEpochAccuracy += Layer2.ResultAccuracy;
                }
            } while (averageEpochAccuracy / (testdel) < E || (Convert.ToDouble(iteration) - Convert.ToDouble((Epoch - 1) * B.nFilesFull)) < B.nFilesFull * 0.9);
            lock (locker)
            {
                if (!ThreadSave)
                {
                    ThreadSave = true;
                    B.Weights1.Save(MainFolder + @"\weights1.txt");
                    B.Weights2.Save(MainFolder + @"\weights2.txt");
                }
            }
        }
Exemplo n.º 2
0
 public SecondLayer(FirstLayer Layer, int nElements, Weight Weights)
 {
     Result       = new double[nElements];
     ResultLength = nElements;
     for (int x = 0; x < nElements; x++)
     {
         if (Result[x] != 0)
         {
             Result[x] = 0;
         }
         for (int y = 0; y < Layer.HiddenLength; y++)
         {
             Result[x] += Layer.Hidden[y] * Weights.Body[y, x];
         }
         Result[x] = MathAI.Sigmoid(Result[x]);
     }
 }
Exemplo n.º 3
0
        public SecondLayer(FirstLayer Layer, int nElements, Weight Weights, int Answer)
        {
            Result       = new double[nElements];
            ResultLength = nElements;
            for (int x = 0; x < nElements; x++)
            {
                if (Result[x] != 0)
                {
                    Result[x] = 0;
                }
                for (int y = 0; y < Layer.HiddenLength; y++)
                {
                    Result[x] += Layer.Hidden[y] * Weights.Body[y, x];
                }
                Result[x] = MathAI.Sigmoid(Result[x]);
            }
            double sumResult = 0;

            for (int i = 0; i < nElements; i++)
            {
                sumResult += Result[i];
            }
            ResultAccuracy = Result[Answer] / sumResult;
        }
Exemplo n.º 4
0
        public static void Main(string[] args)
        {
            string firstquestion;
            string TrainingFolder;             //Основная папка с изображениями для обучения

            if (Directory.Exists(@"\mnist\"))
            {
                MainFolder = @"";
            }
            else
            {
                MainFolder = @"D:";
            }
            Console.WriteLine("DataSet[1] Or Check[2]?");
            firstquestion = Console.ReadLine();
            if (firstquestion[0] == '1')
            {
                do
                {
                    Console.WriteLine(@"Address of images (Folder): " + @MainFolder + @"\mnist\mnist_png\training");
                    TrainingFolder = @MainFolder + @"\mnist\mnist_png\training";
                    Console.WriteLine(@"Starting...");
                    int[]           nFiles     = new int[nElements];
                    List <string>[] filesDigit = new List <string> [nElements];
                    int             nFilesFull = 0;
                    for (int i = 0; i < nElements; i++)
                    {
                        nFiles[i] = HowManyFiles(@TrainingFolder + @"\" + i + @"\");
                        Console.WriteLine(@"In " + @TrainingFolder + @"\" + i + @"\ " + nFiles[i] + " files.");
                    }
                    for (int i = 0; i < 10; i++)
                    {
                        nFilesFull += nFiles[i];
                    }
                    Console.WriteLine(@"Total: " + nFilesFull + " files.");
                    for (int i = 0; i < nElements; i++)
                    {
                        filesDigit[i] = Directory.GetFiles(@TrainingFolder + @"\" + i + @"\", "*.png").ToList <string>();
                    }
                    //Заносим все файлы в массив
                    Digit[,] Digits = new Digit[nElements, MathAI.Max(nFiles)];
                    for (int i = 0; i < Digits.GetLength(0); i++)
                    {
                        for (int k = 0; k < nFiles[i]; k++)
                        {
                            Digits[i, k] = new Digit(filesDigit[i].ElementAt(k));
                        }
                    }
                    filesDigit = null;
                    Console.WriteLine("Digits downloaded.");
                    Weight Weights1 = new Weight(sourcesize * sourcesize, dimHiddenLayer);
                    Weight Weights2 = new Weight(dimHiddenLayer, nElements);
                    //StreamWriter graf = new StreamWriter(@"D:\graf.txt", false);
                    Console.WriteLine("Weights created.");
                    Between A  = new Between(Digits, nFilesFull, nFiles, Weights1, Weights2);
                    Thread  t1 = new Thread(new ParameterizedThreadStart(Teach));
                    Thread  t2 = new Thread(new ParameterizedThreadStart(Teach));
                    Thread  t3 = new Thread(new ParameterizedThreadStart(Teach));
                    Thread  t4 = new Thread(new ParameterizedThreadStart(Teach));
                    t1.Name = "1";
                    t2.Name = "2";
                    t3.Name = "3";
                    t4.Name = "4";
                    Console.WriteLine("Threads starting...");
                    t1.Start(A);
                    t2.Start(A);
                    t3.Start(A);
                    t4.Start(A);
                    t1.Join();
                    t2.Join();
                    t3.Join();
                    t4.Join();
                    Console.WriteLine("Teaching end.");
                    Console.WriteLine();
                    Digits = null;

                    Console.WriteLine(@"Address of test images (Folder):" + MainFolder + @"\mnist\mnist_png\testing");
                    string TestingFolder = MainFolder + @"\mnist\mnist_png\testing";
                    Console.WriteLine(@"Starting testing...");
                    int[] nFilesT = new int[nElements];
                    for (int i = 0; i < nElements; i++)
                    {
                        nFilesT[i] = HowManyFiles(@TestingFolder + @"\" + i + @"\");
                        Console.WriteLine(@"In " + @TestingFolder + @"\" + i + @"\ " + nFilesT[i] + " files.");
                    }
                    int nFilesTFull = 0;
                    for (int i = 0; i < 10; i++)
                    {
                        nFilesTFull += nFilesT[i];
                    }
                    Console.WriteLine(@"Total: " + nFilesTFull + " files.");
                    List <string>[] filesTest = new List <string> [nElements];
                    for (int i = 0; i < nElements; i++)
                    {
                        filesTest[i] = Directory.GetFiles(@TestingFolder + @"\" + i + @"\", "*.png").ToList <string>();
                    }
                    Digit[,] DigitsTest = new Digit[nElements, MathAI.Max(nFilesT)];
                    for (int i = 0; i < DigitsTest.GetLength(0); i++)
                    {
                        for (int k = 0; k < nFilesT[i]; k++)
                        {
                            DigitsTest[i, k] = new Digit(filesTest[i].ElementAt(k));
                        }
                    }
                    //Bitmap imageT;
                    double[] aResult       = new double[nFilesTFull];
                    double   averageResult = 0;
                    for (int iteration2 = 1; iteration2 <= nFilesTFull; iteration2++)
                    {
                        int         curAnswer   = MathAI.GetRandom(0, nElements - 1);
                        int         curDigitVar = MathAI.GetRandom(0, nFilesT[curAnswer] - 1);
                        Digit       curDigit    = DigitsTest[curAnswer, curDigitVar];
                        FirstLayer  Layer1      = new FirstLayer(curDigit, dimHiddenLayer, Weights1);
                        SecondLayer Layer2      = new SecondLayer(Layer1, nElements, Weights2, curAnswer);
                        bool        GoodAnswer;
                        if (MathAI.MaxI(Layer2.Result) == curAnswer)
                        {
                            GoodAnswer = true;
                        }
                        else
                        {
                            GoodAnswer = false;
                        }
                        Console.WriteLine("Iteration #" + iteration2 + " | " + GoodAnswer);
                        Console.WriteLine("Answer = " + curAnswer);
                        Console.WriteLine("Output = " + MathAI.MaxI(Layer2.Result));
                        Console.WriteLine("Average = " + Layer2.Result[curAnswer]);
                        for (int i = 0; i < Layer2.ResultLength; i++)
                        {
                            Console.WriteLine(i + ": " + (Layer2.Result[i]));
                        }
                        //for (int i = 0; i < Layer2.ResultLength; i++) fullResultWork += Result[i];
                        aResult[iteration2 - 1] = Layer2.Result[curAnswer];
                    }
                    for (int i = 0; i < nFilesTFull; i++)
                    {
                        averageResult += aResult[i];
                    }
                    averageResult /= nFilesTFull;
                    Console.WriteLine("-------------\nTotal Average = " + averageResult);
                    Console.ReadKey();
                    DigitsTest = null;
                    break;
                } while (TrainingFolder != @"\q");
            }
            else
            {
                string FileAddress;
                do
                {
                    Console.WriteLine("Enter address of image: ");

                    FileAddress = Console.ReadLine();
                    Weight      Weights1 = new Weight(@"D:\weights1.txt");
                    Weight      Weights2 = new Weight(@"D:\weights2.txt");
                    Digit       curDigit = new Digit(@FileAddress);
                    FirstLayer  Layer1   = new FirstLayer(curDigit, dimHiddenLayer, Weights1);
                    SecondLayer Layer2   = new SecondLayer(Layer1, nElements, Weights2);
                    Console.WriteLine("Answer: " + MathAI.MaxI(Layer2.Result));
                    Console.WriteLine("Detail: ");
                    for (int i = 0; i < Layer2.ResultLength; i++)
                    {
                        Console.WriteLine(i + ": " + (Layer2.Result[i]));
                    }
                    Console.ReadKey();
                } while (FileAddress != @"\q");
            }
        }
Exemplo n.º 5
0
        public static void Correct(FirstLayer Layer1, SecondLayer Layer2, Weight Weights1, Weight Weights2, int curAnswer, int nElements, int dimHiddenLayer, double LearningRate)
        {
            double[] lError         = new double[nElements];
            double[] deltaWeights   = new double[nElements];
            double   fullResultWork = 0;

            for (int i = 0; i < Layer2.ResultLength; i++)
            {
                fullResultWork += Layer2.Result[i];
            }
            for (int i = 0; i < nElements; i++)
            {
                if (i != curAnswer)
                {
                    lError[i] = Layer2.Result[i];
                }
                else
                {
                    lError[i] = (Layer2.Result[i] - 1);
                }
            }
            for (int i = 0; i < nElements; i++)
            {
                deltaWeights[i] = lError[i] * MathAI.derSigmoid2(Layer2.Result[i]);
            }

            double[] lError2       = new double[dimHiddenLayer];
            double[] deltaWeights2 = new double[dimHiddenLayer];
            for (int i = 0; i < dimHiddenLayer; i++)
            {
                lError2[i] = 0;
                for (int j = 0; j < nElements; j++)
                {
                    lError2[i] += Weights2.Body[i, j] * deltaWeights[j];
                }
            }
            for (int i = 0; i < dimHiddenLayer; i++)
            {
                deltaWeights2[i] = lError2[i] * MathAI.derSigmoid2(Layer1.Hidden[i]);
            }
            for (int x = 0; x < Weights2.Width; x++)
            {
                for (int y = 0; y < Weights2.Height; y++)
                {
                    //Weights2.Body[x, y] -= Layer1.Hidden[x] * deltaWeights[y] * LearningRate;
                    Weights2.Body[x, y] -= Layer1.Hidden[x] * deltaWeights[y] * LearningRate;
                }
            }
            for (int x = 0; x < Weights1.Width; x++)
            {
                for (int y = 0; y < Weights1.Height; y++)
                {
                    Weights1.Body[x, y] -= Layer1.curLayer[x] * deltaWeights2[y] * LearningRate;
                }
            }
            //aResult[(k - 1) * nButch + Epoch - 1] = Result[answer] / fullResultWork;

            fError = 0;
            for (int i = 0; i < lError.GetLength(0); i++)
            {
                fError += lError[i] * lError[i];
            }
            fError /= 2;
        }