Exemplo n.º 1
0
        public void Test()
        {
            weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("D:\\android_analysis\\attributes.arff"));
            insts.setClassIndex(insts.numAttributes() - 1);

            weka.classifiers.Classifier cl = new weka.classifiers.trees.J48();
            cl.buildClassifier(insts);
            weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
            myRandom.setInputFormat(insts);
            insts = weka.filters.Filter.useFilter(insts, myRandom);

            int trainSize = (int)(insts.numInstances() * 0.66);
            int testSize  = insts.numInstances() - trainSize;

            weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

            cl.buildClassifier(train);
            for (int i = trainSize; i < insts.numInstances(); i++)
            {
                weka.core.Instance currentInst    = insts.instance(i);
                double             predictedClass = cl.classifyInstance(currentInst);
                double[]           distrs         = cl.distributionForInstance(currentInst);
                string             actual         = insts.classAttribute().value((int)currentInst.classValue());
                string             predicted      = insts.classAttribute().value((int)predictedClass);
                System.Console.WriteLine("ID: " + (i + 1) + ", " + actual + " --> " + predicted);
            }
        }
Exemplo n.º 2
0
        public static string WEKA_GETMLP(weka.core.Instances insts)
        {
            string THEOUTPUT = " ";

            try
            {
                insts.setClassIndex(insts.numAttributes() - 1);
                weka.classifiers.functions.MultilayerPerceptron mlp = new weka.classifiers.functions.MultilayerPerceptron();

                //SETTING PARAMETERS
                weka.core.Utils.splitOptions("-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H 3");
                mlp.buildClassifier(insts);


                THEOUTPUT = mlp.ToString();
            }
            catch (java.lang.Exception ex)
            {
                ex.printStackTrace();
            }

            return(THEOUTPUT);

            //new Program().Method3
        }
Exemplo n.º 3
0
        private weka.core.Instances CreateEmptyInstances()
        {
            var atts = new java.util.ArrayList();

            atts.add(new weka.core.Attribute("x"));
            atts.add(new weka.core.Attribute("y"));

            if (!ckbClassIsNominal.Checked)
            {
                atts.add(new weka.core.Attribute("v"));
            }
            else
            {
                // - nominal
                var attVals = new java.util.ArrayList();
                //for(int i=0; i<MAXCLASSNUM; ++i)
                //    attVals.add(i.ToString());
                attVals.add("0");
                attVals.add("1");
                atts.add(new weka.core.Attribute("v", attVals));
            }

            weka.core.Instances data = new weka.core.Instances("MyRelation", atts, 0);
            data.setClassIndex(data.numAttributes() - 1);

            return(data);
        }
Exemplo n.º 4
0
        public List <string> Classify(string model, string test)
        {
            List <string> ret = new List <string>();

            try
            {
                java.io.ObjectInputStream   ois = new java.io.ObjectInputStream(new java.io.FileInputStream(model));
                weka.classifiers.Classifier cl  = (weka.classifiers.Classifier)ois.readObject();
                ois.close();

                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(test));
                insts.setClassIndex(insts.numAttributes() - 1);
                for (int i = 0; i < 1; i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = cl.classifyInstance(currentInst);
                    double[]           distrs         = cl.distributionForInstance(currentInst);
                    //string actual = insts.classAttribute().value((int)currentInst.classValue());
                    //string predicted = insts.classAttribute().value((int)predictedClass);
                    // System.Console.WriteLine("ID: " + (i + 1) + ", " + predicted);
                    for (int j = 0; j < distrs.Length; j++)
                    {
                        string predicted = insts.classAttribute().value(j);
                        string distr     = distrs[j].ToString("#0.000");
                        ret.Add(predicted + "," + distr);
                    }
                }
                return(ret);
            }
            catch
            {
                return(ret);
            }
        }
Exemplo n.º 5
0
        /// <summary>
        /// Creates a classifier of the desired type from an .arff file
        /// </summary>
        /// <param name="ARFFfile">The arff file to read from. Should be a full path.</param>
        /// <param name="classifier">The type of classifier you want to make.</param>
        /// <returns>The classifier you created</returns>
        public void createModel(string ARFFfile, Classifier myClassifier)
        {
            if (debug)
            {
                Console.WriteLine("Loading ARFF file " + ARFFfile);
            }

            _classifier = GetClassifier(myClassifier);
            try
            {
                _dataSet = new weka.core.Instances(new java.io.FileReader(ARFFfile));
                if (debug)
                {
                    Console.WriteLine("You have " + _dataSet.numAttributes() + " attributes.");
                }
                _dataSet.setClassIndex(_dataSet.numAttributes() - 1);

                _classifier.buildClassifier(_dataSet);

                if (debug)
                {
                    Console.WriteLine(_classifier.toString());
                }
            }
            catch (Exception e)
            {
                Console.WriteLine("You failed. End of Game. Poor Weka.");
                Console.WriteLine(e);
            }
        }
Exemplo n.º 6
0
    public static void Main(String[] args)
    {
        try
        {
            // Load the model
            java.io.ObjectInputStream   stream       = new java.io.ObjectInputStream(new java.io.FileInputStream("iris_j48.model"));
            weka.classifiers.Classifier qhClassifier = (weka.classifiers.Classifier)stream.readObject();
            stream.close();

            // This model was trained on 66% of instances from the iris dataset. Test the model on remaining 34% instances.
            weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("iris.arff"));
            insts.setClassIndex(insts.numAttributes() - 1);
            int percentSplit = 66;
            int trainSize    = insts.numInstances() * percentSplit / 100;
            int testSize     = insts.numInstances() - trainSize;
            int numCorrect   = 0;
            for (int i = trainSize; i < insts.numInstances(); i++)
            {
                weka.core.Instance currentInst    = insts.instance(i);
                double             predictedClass = qhClassifier.classifyInstance(currentInst);
                if (predictedClass == insts.instance(i).classValue())
                {
                    numCorrect++;
                }
            }
            Console.WriteLine(numCorrect + " out of " + testSize + " correct (" + (double)((double)numCorrect / (double)testSize * 100.0) + "%)");
        }
        catch (java.lang.Exception e)
        {
            e.printStackTrace();
        }
    }
Exemplo n.º 7
0
        private void btnLoad_Click(object sender, EventArgs e)
        {
            using (OpenFileDialog d = new OpenFileDialog())
            {
                d.Filter = "Arff File|*.arff";
                if (d.ShowDialog() == System.Windows.Forms.DialogResult.OK)
                {
                    var fileReader = new java.io.FileReader(d.FileName);
                    var instances  = new weka.core.Instances(new java.io.BufferedReader(fileReader));
                    instances.setClassIndex(instances.numAttributes() - 1);
                    fileReader.close();

                    clear_all();
                    foreach (weka.core.Instance i in instances)
                    {
                        var p = new valuePoint(i.value(0), i.value(1), (int)i.classValue());
                        if (p.x < 0 || p.x >= 1 || p.y < 0 || p.y >= 1)
                        {
                            continue;
                        }
                        point_list.Add(p);
                    }
                    draw_all_points();
                    this.pictureBox1.Invalidate();
                }
            }
        }
Exemplo n.º 8
0
    //**************************************************************************************

    /// <summary>
    /// Returns classifier prediction based on provided parameters.
    /// </summary>
    /// <param name="iParameters"></param>
    public Prediction Predict(float[] iParameters)
    {
        if (iParameters is null)
        {
            throw new ArgumentNullException(nameof(iParameters));
        }

        WaitTillModelReady();

        // Create instances object
        var instances = new weka.core.Instances("Test", Attributes, 1);

        instances.setClassIndex(instances.numAttributes() - 1);

        // Create single instance
        var instance = new weka.core.DenseInstance(instances.numAttributes() - 1);

        instance.setDataset(instances);

        // Fill instance with data
        for (int i = 0; i < iParameters.Length; i++)
        {
            instance.setValue(i, iParameters[i]);
        }

        // Get prediction
        double prediction = Model.classifyInstance(instance);

        // Convert prediction to decision
        return((Prediction)Enum.Parse(typeof(Prediction), instances.classAttribute().value((int)prediction)));
    }
Exemplo n.º 9
0
        //Only 1 output: last instance
        static public string do_Classification_bySerialClassfier_1out_standAlone
            (SerializedClassifier serialClassifier, weka.core.Instances instances, int colClass)
        {
            instances.setClassIndex(colClass);
            weka.core.Instance each           = instances.instance(instances.numInstances() - 1);
            double             predictedClass = serialClassifier.classifyInstance(each);

            return(instances.classAttribute().value((int)predictedClass));
        }
Exemplo n.º 10
0
        //void report_write(){
        //    Evaluation eval = new Evaluation(trainCases);
        //    eval.crossValidateModel(tree, trainCases, 3, new Random(1));
        //    System.out.println(eval.toSummaryString("\nResults\n======\n", false));
        //    System.out.println(eval.toClassDetailsString());
        //    System.out.println(eval.toMatrixString());
        //    System.out.println("accuracy:"+eval.pctCorrect());
        //    System.out.println("Specificity:"+eval.truePositiveRate(0));
        //    System.out.println("sensitivity:"+eval.trueNegativeRate(0));
        //}



        //======================================================================
        //--------- Seperate Part -------

        public static weka.core.Instances getInst(string path_file, int colIndex)
        {
            try
            {
                weka.core.Instances ins = new weka.core.Instances(new java.io.FileReader(path_file));
                ins.setClassIndex(colIndex);
                return(ins);
            }
            catch (Exception ex)
            {
                TheSys.showError("Err: " + ex.ToString(), true);
                return(null);
            }
        }
Exemplo n.º 11
0
        /// <summary>
        /// Loads a classifier from a model file.
        /// </summary>
        /// <param name="filename">The filename (full path) that you want to load. Should be an .arff file and a .model file in your working directory.</param>
        public void loadModel(string filename)
        {
            if (debug)
            {
                Console.WriteLine("Model loading...");
            }
            _classifier = (weka.classifiers.Classifier)weka.core.SerializationHelper.read(filename + MODEL);
            _dataSet    = new weka.core.Instances(new java.io.FileReader(filename + ARFF));
            _dataSet.setClassIndex(_dataSet.numAttributes() - 1);

            if (debug)
            {
                Console.WriteLine("Model locked and loaded!");
            }
        }
Exemplo n.º 12
0
    //**************************************************************************************

    /// <summary>
    /// Creates and fills in weka instances object.
    /// </summary>
    protected static weka.core.Instances CreateInstances(CandlestickCollection iCandlesticks, List <int> iTrainingPoints, java.util.ArrayList iAttributes, List <ClassifierParameter> iParameters, Candlestick.Period iPeriod, int iMaxProfitTime)
    {
        int dataSize = iTrainingPoints.Count;

        // Create instance object
        var instances = new weka.core.Instances("Data", iAttributes, dataSize);

        // Set class index
        instances.setClassIndex(instances.numAttributes() - 1);

        // Fill instances
        FillInstances(instances, CalculateDecisions(iCandlesticks[kTrainingPeriod], iTrainingPoints, iMaxProfitTime), CalculateParameters(iParameters, iCandlesticks, iTrainingPoints, iPeriod));

        return(instances);
    }
Exemplo n.º 13
0
 private weka.core.Instances ReadFile(string path)
 {
     try
     {
         weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(path));
         insts.setClassIndex(insts.numAttributes() - 1);
         return(insts);
     }
     catch (java.lang.Exception ex)
     {
         ex.printStackTrace();
         MessageBox.Show(ex.ToString(), "Error reading file", MessageBoxButtons.OK, MessageBoxIcon.Error);
         return(null);
     }
 }
    protected void Button2_Click(object sender, EventArgs e)
    {
        weka.core.Instances data = new weka.core.Instances(new java.io.FileReader("d:\\train.arff"));
        data.setClassIndex(data.numAttributes() - 1);
        weka.classifiers.Classifier cls = new weka.classifiers.bayes.NaiveBayes();
        // weka.classifiers.functions.supportVector.SMOset();
        int runs  = 1;
        int folds = 10;

        //string sq = "delete from nbresults";
        //dbc.execfn(sq);
        // perform cross-validation
        for (int i = 0; i < runs; i++)
        {
            // randomize data
            int seed = i + 1;
            java.util.Random    rand     = new java.util.Random(seed);
            weka.core.Instances randData = new weka.core.Instances(data);
            randData.randomize(rand);
            if (randData.classAttribute().isNominal())
            {
                randData.stratify(folds);
            }
            // weka.classifiers.trees.j48 jj;
            weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(randData);
            for (int n = 0; n < folds; n++)
            {
                weka.core.Instances train = randData.trainCV(folds, n);
                weka.core.Instances test  = randData.testCV(folds, n);
                // build and evaluate classifier
                weka.classifiers.Classifier clsCopy = weka.classifiers.Classifier.makeCopy(cls);
                clsCopy.buildClassifier(train);

                eval.evaluateModel(clsCopy, test);
            }

            preci_value.Text  = eval.precision(0).ToString();
            recall_value.Text = eval.recall(0).ToString();
            acc_value.Text    = eval.fMeasure(0).ToString();

            string s = "NB";
            //    string str = "insert into evaluation values('" + instid.Text + "','" + courid.Text.ToString() + "','" + preci_value.Text.ToString() + "','" + recall_value.Text.ToString() + "','" + acc_value.Text.ToString() + "','" + s + "' )";
            //  db.execfn(str);
            //  MessageBox.Show("saved");
        }
    }
Exemplo n.º 15
0
        private void btnLoadStep_Click(object sender, EventArgs e)
        {
            if (m_loadStepInstances == null)
            {
                using (OpenFileDialog d = new OpenFileDialog())
                {
                    d.Filter = "Arff File|*.arff";
                    if (d.ShowDialog() == System.Windows.Forms.DialogResult.OK)
                    {
                        m_loadStepInstances = new weka.core.Instances(new java.io.BufferedReader(new java.io.FileReader(d.FileName)));
                        m_loadStepInstances.setClassIndex(m_loadStepInstances.numAttributes() - 1);

                        clear_all();
                    }
                }
            }
            else
            {
                for (int i = m_loadStepIdx; i < m_loadStepInstances.numInstances(); ++i)
                {
                    var ins = m_loadStepInstances.instance(i);
                    var p   = new valuePoint(ins.value(0), ins.value(1), (int)ins.classValue());
                    if (p.x < 0 || p.x >= 1 || p.y < 0 || p.y >= 1)
                    {
                        continue;
                    }

                    point_list.Add(p);

                    draw_point(p);

                    m_loadStepIdx = i + 1;
                    if (i % 1000 == 0)
                    {
                        break;
                    }
                }

                pictureBox1.Invalidate();
                if (m_loadStepIdx == m_loadStepInstances.numInstances())
                {
                    m_loadStepIdx       = 0;
                    m_loadStepInstances = null;
                }
            }
        }
Exemplo n.º 16
0
        //Knn
        public static double Knn(weka.core.Instances insts)
        {
            try
            {
                insts.setClassIndex(insts.numAttributes() - 1);

                Knncl = new weka.classifiers.lazy.IBk();

                weka.filters.Filter myDummy = new weka.filters.unsupervised.attribute.NominalToBinary();
                myDummy.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myDummy);

                weka.filters.Filter myNormalize = new weka.filters.unsupervised.instance.Normalize();
                myNormalize.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myNormalize);

                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize             = insts.numInstances() * percentSplit / 100;
                int testSize              = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                Knncl.buildClassifier(train);


                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = Knncl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                return((double)numCorrect / (double)testSize * 100.0);
            }
            catch (java.lang.Exception ex)
            {
                ex.printStackTrace();
                return(0);
            }
        }
Exemplo n.º 17
0
        public void Test2()
        {
            java.io.ObjectInputStream   ois = new java.io.ObjectInputStream(new java.io.FileInputStream("D:\\android_analysis\\som_model.model"));
            weka.classifiers.Classifier cl  = (weka.classifiers.Classifier)ois.readObject();
            ois.close();

            weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("D:\\android_analysis\\test1.arff"));
            insts.setClassIndex(insts.numAttributes() - 1);
            for (int i = 0; i < insts.numInstances(); i++)
            {
                weka.core.Instance currentInst    = insts.instance(i);
                double             predictedClass = cl.classifyInstance(currentInst);
                double[]           distrs         = cl.distributionForInstance(currentInst);
                //string actual = insts.classAttribute().value((int)currentInst.classValue());
                //string predicted = insts.classAttribute().value((int)predictedClass);
                // System.Console.WriteLine("ID: " + (i + 1) + ", " + predicted);
            }
        }
Exemplo n.º 18
0
        public static string classifyTest()
        {
            try
            {
                String result = "";

                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("C:\\Program Files\\Weka-3-7\\data\\iris.arff"));
                insts.setClassIndex(insts.numAttributes() - 1);

                weka.classifiers.Classifier cl = new weka.classifiers.trees.J48();
                //  Console.WriteLine("Performing " + percentSplit + "% split evaluation.");
                result += "Performing " + percentSplit + "% split evaluation.\n";
                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize             = insts.numInstances() * percentSplit / 100;
                int testSize              = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                cl.buildClassifier(train);
                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = cl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                //Console.WriteLine(numCorrect + " out of " + testSize + " correct (" + (double)((double)numCorrect / (double)testSize * 100.0) + "%)");
                result += (numCorrect + " out of " + testSize + " correct (" + (double)((double)numCorrect / (double)testSize * 100.0) + "%)");

                return(result);
            }
            catch (Exception ex)
            {
                MessageBox.Show(ex.Message);
                return(ex.Message);
            }
        }
    private void initialiseClassifier()
    {
        // Loads the file to grab the filename.
        GameObject      player = GameObject.Find("Player");
        PlayerBehaviour playerBehaviourScript = player.GetComponent <PlayerBehaviour>();

        //loads training and test data, builds new classifier and trains it
        insts = new weka.core.Instances(new java.io.FileReader(playerBehaviourScript.stringToEdit));
        insts.setClassIndex(4);
        j48Classifier = new weka.classifiers.trees.J48();
        //Optionals methods currently testing for improvements
        //j48Classifier.setUnpruned (true);
        //j48Classifier.setUseLaplace (true);
        j48Classifier.buildClassifier(insts);
        //NO CURRENT TEST SET READY TO USE
        //weka.core.Instances testData = new weka.core.Instances(new java.io.FileReader("TestSet.arff"));
        //testData.setClassIndex(5);
        //weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(insts);
        //eval.evaluateModel (j48Classifier,testData);
        Debug.Log(j48Classifier.toSummaryString());
    }
    /* Use when the player logs in to initially create the classifier with data from server */
    public void InitializeClassifier(String dataString)
    {
        try {
            java.io.StringReader   stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader   = new java.io.BufferedReader(stringReader);

            playerData = new weka.core.Instances(buffReader);

            /* State where in each Instance the class attribute is, if its not already specified by the file */
            if (playerData.classIndex() == -1)
            {
                playerData.setClassIndex(playerData.numAttributes() - 1);
            }

            /* NAIVE BAYES */
            //classifier = new weka.classifiers.bayes.NaiveBayes();

            /* NEURAL NET */
            //classifier = new weka.classifiers.functions.MultilayerPerceptron();
            //((weka.classifiers.functions.MultilayerPerceptron)classifier).setHiddenLayers("12");

            /* J48 TREE */
            //classifier = new weka.classifiers.trees.J48();

            /* IB1 NEAREST NEIGHBOUR */
            //classifier = new weka.classifiers.lazy.IB1();

            /* RANDOM FOREST */
            classifier = new weka.classifiers.trees.RandomForest();


            classifier.buildClassifier(playerData);
            Debug.Log("Initialized Classifier");
        }
        catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
    }
Exemplo n.º 21
0
        static public List <string> do_Classification_bySerialClassfier_standAlone
            (SerializedClassifier serialClassifier, weka.core.Instances instances, int colClass)
        {
            instances.setClassIndex(colClass);
            List <string> listPredictClass = new List <string>();
            double        predictedClass; double actualClass; predict_numCorrect = 0;

            weka.core.Instance each;
            for (int i = 0; i < instances.numInstances(); i++)
            {
                each           = instances.instance(i);
                predictedClass = serialClassifier.classifyInstance(each);
                actualClass    = instances.instance(i).classValue();
                if (predictedClass == actualClass)
                {
                    predict_numCorrect++;
                }
                //Get Class Name
                listPredictClass.Add(instances.classAttribute().value((int)predictedClass));
            }
            return(listPredictClass);
        }
Exemplo n.º 22
0
 public static void do_Classification_full(Boolean loadData)
 {
     try
     {
         if (loadData == true)
         {
             step_loadInstance();
         }
         insts.setClassIndex(colClass);//Which Column is classified
         if (random_sort == true)
         {
             step_randomInstanceOrder();
         }
         //------ Train & Test ----------
         classifier = step_buildClassifier(classify_model);
         txtResult_Reset();
         step_train_test();
     }
     catch (Exception ex)
     {
         TheSys.showError("Err: " + ex.ToString(), true);
     }
 }
            public int InitializeClassifier(string[] atributes, string[] gestures, string classAttribute, string modelLocation)
            {
                java.io.ObjectInputStream ois = new java.io.ObjectInputStream(new java.io.FileInputStream(modelLocation));


                m_cl = (weka.classifiers.Classifier)ois.readObject();

                //Declare the feature vector
                weka.core.FastVector fvWekaFeatureVector = new weka.core.FastVector(atributes.Length + 1);
                for (int i = 0; i < atributes.Length; i++)
                {
                    weka.core.Attribute aux = new weka.core.Attribute(atributes[i]);
                    fvWekaFeatureVector.addElement(aux);
                }


                //Declare the class weka.core.Attribute along with its values
                weka.core.FastVector fvClassValues = new weka.core.FastVector(gestures.Length);
                for (int i = 0; i < gestures.Length; i++)
                {
                    weka.core.Attribute z1 = new weka.core.Attribute(atributes[i]);
                    fvClassValues.addElement(gestures[i]);
                }
                //fvClassValues.addElement("yes");
                //fvClassValues.addElement("no");

                weka.core.Attribute ClassAttribute = new weka.core.Attribute(classAttribute, fvClassValues);

                fvWekaFeatureVector.addElement(ClassAttribute);

                dataSet = new weka.core.Instances("TestRel", fvWekaFeatureVector, 10);
                dataSet.setClassIndex(atributes.Length);

                testInstance = new weka.core.Instance(atributes.Length + 1);

                return(1);
            }
Exemplo n.º 24
0
        public static void classifyTest()
        {
            try
            {
                Console.WriteLine("Hello Java, from C#!");
                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("D:/iris.arff"));
                insts.setClassIndex(insts.numAttributes() - 1);

                weka.classifiers.Classifier cl = new weka.classifiers.trees.J48();
                Console.WriteLine("Performing " + 33 + "% split evaluation.");

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize = insts.numInstances() * 33 / 100;
                int testSize = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                cl.buildClassifier(train);
                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst = insts.instance(i);
                    double predictedClass = cl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                        numCorrect++;
                }
                Console.WriteLine(numCorrect + " out of " + testSize + " correct (" +
                           (double)((double)numCorrect / (double)testSize * 100.0) + "%)");
            }
            catch (Exception ex)
            {

            }
        }
Exemplo n.º 25
0
        private void btnLoadStep_Click(object sender, EventArgs e)
        {
            if (m_loadStepInstances == null)
            {
                using (OpenFileDialog d = new OpenFileDialog())
                {
                    d.Filter = "Arff File|*.arff";
                    if (d.ShowDialog() == System.Windows.Forms.DialogResult.OK)
                    {
                        m_loadStepInstances = new weka.core.Instances(new java.io.BufferedReader(new java.io.FileReader(d.FileName)));
                        m_loadStepInstances.setClassIndex(m_loadStepInstances.numAttributes() - 1);

                        clear_all();
                    }
                }
            }
            else
            {
                for (int i = m_loadStepIdx; i < m_loadStepInstances.numInstances(); ++i)
                {
                    var ins = m_loadStepInstances.instance(i);
                    var p = new valuePoint(ins.value(0), ins.value(1), (int)ins.classValue());
                    if (p.x < 0 || p.x >= 1 || p.y < 0 || p.y >= 1)
                        continue;

                    point_list.Add(p);

                    draw_point(p);

                    m_loadStepIdx = i + 1;
                    if (i % 1000 == 0)
                    {
                        break;
                    }
                }

                pictureBox1.Invalidate();
                if (m_loadStepIdx == m_loadStepInstances.numInstances())
                {
                    m_loadStepIdx = 0;
                    m_loadStepInstances = null;
                }
            }
        }
Exemplo n.º 26
0
        private void button1_Click(object sender, EventArgs e)
        {
            string         fname  = "";
            OpenFileDialog dialog = new OpenFileDialog();

            dialog.Filter =
                "Weka Files (*.arff)|*.arff|All files (*.*)|*.*";
            dialog.InitialDirectory = Application.StartupPath;
            dialog.Title            = "Select a .arff file";
            if (dialog.ShowDialog() == DialogResult.OK)
            {
                fname = dialog.FileName;
                //label5.Text = System.IO.Directory.;
            }
            if (fname == "")
            {
                return;
            }
            try
            {
                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(fname.ToString()));
                insts.setClassIndex(insts.numAttributes() - 1);


                Classifier cl = new weka.classifiers.functions.SMO();
                //label1.Text = "Performing " + percentSplit + "% split evaluation.";


                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize             = insts.numInstances() * percentSplit / 100;
                int testSize              = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                cl.buildClassifier(train);
                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = cl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                //label1.Text = numCorrect + " out of " + testSize + " correct (" +
                //(double)((double)numCorrect / (double)testSize * 100.0) + "%)";

                label6.Text = testSize.ToString();
                label7.Text = numCorrect.ToString();
                label8.Text = (double)((double)numCorrect / (double)testSize * 100.0) + "%";
                double result_perc = (double)((double)numCorrect / (double)testSize * 100.0);

                result_perc = Math.Truncate(result_perc);

                try
                {
                    // Send Data On Serial port
                    SerialPort serialPort = new SerialPort("COM" + textBox1.Text + "", Int32.Parse(textBox2.Text), Parity.None, 8);
                    serialPort.Open();

                    if (result_perc <= 75)
                    {
                        serialPort.WriteLine("1");
                    }


                    serialPort.WriteLine("a");


                    serialPort.Close();
                }
                catch (Exception ex)
                {
                    MessageBox.Show(ex.Message);
                }
            }
            catch (java.lang.Exception ex)
            {
                MessageBox.Show(ex.getMessage().ToString(), "");
            }
        }
        //public object Clone() {
        //    MemoryStream ms = new MemoryStream(500000000);
        //    System.Runtime.Serialization.Formatters.Binary.BinaryFormatter bf =
        //        new System.Runtime.Serialization.Formatters.Binary.BinaryFormatter(null,
        //            new System.Runtime.Serialization.StreamingContext(System.Runtime.Serialization.StreamingContextStates.Clone));
        //    bf.Serialize(ms, this);
        //    ms.Seek(0, SeekOrigin.Begin);
        //    object obj = bf.Deserialize(ms);
        //    ms.Close();
        //    return obj;
        //}
        public void train(bool LoadingFromFile)
        {
            if (!LoadingFromFile) {
                DisplayMessage("Begin training on Efigi galaxies...");
                Console.Write("Begin training on Efigi galaxies...");
            }
            else {
                DisplayImage(0);
                DisplayMessage("Load from file...");
                Console.Write("Load from file...");

                frV = new GeneralMatrix(ReadFVMatrix(0));
                fgV = new GeneralMatrix(ReadFVMatrix(1));
                fbV = new GeneralMatrix(ReadFVMatrix(2));
            }

            weka.classifiers.trees.M5P tree = new weka.classifiers.trees.M5P();

            String[] options = new String[1];
            weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource(OutputDir + "Results/" + "resultsGalaxy.arff");
            data = source.getDataSet();
            if (data == null) {
                DisplayMessage("Cannot load from file.");
                throw new Exception("Arff File not valid");
            }
            data.setClassIndex(0);
            tree.buildClassifier(data);

            StreamWriter output = new StreamWriter(OutputDir + "Results/" + "classification.txt");

            rmse = 0.0;
            int classifiedCount = 0;

            weka.filters.unsupervised.attribute.Remove rm = new weka.filters.unsupervised.attribute.Remove();
            rm.setInputFormat(data);
            fc = new FilteredClassifier();
            fc.setFilter(rm);
            fc.setClassifier(tree);

            for (int i = 0; i < data.numInstances(); i++) {
                int classPrediction = (int)Math.Round(fc.classifyInstance(data.instance(i)));
                if (classPrediction < -6) {
                    classPrediction = -6;
                }
                else if (classPrediction > 11) {
                    classPrediction = 11;
                }

                int actualClass = (int)Math.Round(data.instance(i).classValue());

                int error = Math.Abs(classPrediction - actualClass);
                rmse += error * error;
                classifiedCount++;

                output.WriteLine("\n" + classPrediction + ", " + error);
                if (i % 10 == 0 && !LoadingFromFile)
                    DisplayImage(i);
            }

            rmse = Math.Sqrt(rmse / classifiedCount);
            output.WriteLine("\nRMSE: " + rmse);

            DisplayMessage("RMSE: " + rmse);

            output.Flush();
            output.Close();
            output.Dispose();

            readyToClassify = true;

            Console.WriteLine("Finished training on Efigi galaxies; RMSE: " + rmse.ToString());
        }
Exemplo n.º 28
0
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog file = new OpenFileDialog();

            if (file.ShowDialog() == DialogResult.OK)
            {
                string filename = file.FileName;
                string filee    = Path.GetFileName(filename);
                bool   attributeType;
                string attributeName      = " ";
                int    numAttributeValue  = 0;
                string attributeValueName = " ";

                textBox1.Text = filee + " chosen succesfully!";

                ///////Decision Tree
                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(filename));


                insts.setClassIndex(insts.numAttributes() - 1);

                //find nominal or numeric attributes and create dropbox or textbox
                int numofAttributes = insts.numAttributes() - 1;
                for (int i = 0; i < numofAttributes; i++)
                {
                    attributeType = insts.attribute(i).isNumeric();
                    attributeName = insts.attribute(i).name();
                    dataGridView1.Rows.Add(attributeName);
                    if (attributeType == true)
                    {
                    }
                    else
                    {
                        numAttributeValue = insts.attribute(i).numValues();
                        string[] name = new string[numAttributeValue];
                        for (int j = 0; j < numAttributeValue; j++)
                        {
                            attributeValueName = insts.attribute(i).value(j);
                            name[j]           += attributeValueName;
                        }
                        DataGridViewComboBoxCell combo = new DataGridViewComboBoxCell();
                        combo.DataSource = name.ToList();
                        dataGridView1.Rows[i].Cells[1] = combo;
                    }
                }

                cl = new weka.classifiers.trees.J48();

                textBox2.Text = "Performing " + percentSplit + "% split evaluation.";

                //filling missing values
                weka.filters.Filter missingval = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, missingval);

                weka.filters.Filter myNormalized = new weka.filters.unsupervised.instance.Normalize();
                myNormalized.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myNormalized);


                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                int trainSize             = insts.numInstances() * percentSplit / 100;
                int testSize              = insts.numInstances() - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                cl.buildClassifier(train);

                string str = cl.toString();

                int numCorrect = 0;
                for (int i = trainSize; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = cl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                textBox3.Text = numCorrect + " out of " + testSize + " correct (" +
                                (double)((double)numCorrect / (double)testSize * 100.0) + "%)";



                //////////Naive Bayes

                //dosya okuma
                weka.core.Instances insts2 = new weka.core.Instances(new java.io.FileReader(filename));
                insts2.setClassIndex(insts2.numAttributes() - 1);

                //naive bayes
                cl2 = new weka.classifiers.bayes.NaiveBayes();


                //filling missing values
                weka.filters.Filter missingval2 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval2.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, missingval2);

                //for naive bayes
                weka.filters.Filter discrete2 = new weka.filters.unsupervised.attribute.Discretize();
                discrete2.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, discrete2);

                //randomize the order of the instances in the dataset. -ortak
                weka.filters.Filter myRandom2 = new weka.filters.unsupervised.instance.Randomize();
                myRandom2.setInputFormat(insts2);
                insts2 = weka.filters.Filter.useFilter(insts2, myRandom2);

                //ortak
                int trainSize2             = insts2.numInstances() * percentSplit / 100;
                int testSize2              = insts2.numInstances() - trainSize2;
                weka.core.Instances train2 = new weka.core.Instances(insts2, 0, trainSize2);

                cl2.buildClassifier(train2);

                string str2 = cl2.toString();

                int numCorrect2 = 0;
                for (int i = trainSize2; i < insts2.numInstances(); i++)
                {
                    weka.core.Instance currentInst2    = insts2.instance(i);
                    double             predictedClass2 = cl2.classifyInstance(currentInst2);
                    if (predictedClass2 == insts2.instance(i).classValue())
                    {
                        numCorrect2++;
                    }
                }
                textBox4.Text = numCorrect2 + " out of " + testSize2 + " correct (" +
                                (double)((double)numCorrect2 / (double)testSize2 * 100.0) + "%)";


                /////////K-Nearest Neigbour

                //dosya okuma
                weka.core.Instances insts3 = new weka.core.Instances(new java.io.FileReader(filename));
                insts3.setClassIndex(insts3.numAttributes() - 1);

                cl3 = new weka.classifiers.lazy.IBk();


                //filling missing values
                weka.filters.Filter missingval3 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, missingval3);

                //Convert to dummy attribute knn,svm,neural network
                weka.filters.Filter dummy3 = new weka.filters.unsupervised.attribute.NominalToBinary();
                dummy3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, dummy3);

                //normalize numeric attribute
                weka.filters.Filter myNormalized3 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, myNormalized3);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom3 = new weka.filters.unsupervised.instance.Randomize();
                myRandom3.setInputFormat(insts3);
                insts3 = weka.filters.Filter.useFilter(insts3, myRandom3);

                int trainSize3             = insts3.numInstances() * percentSplit / 100;
                int testSize3              = insts3.numInstances() - trainSize3;
                weka.core.Instances train3 = new weka.core.Instances(insts3, 0, trainSize3);

                cl3.buildClassifier(train3);

                string str3 = cl3.toString();

                int numCorrect3 = 0;
                for (int i = trainSize3; i < insts3.numInstances(); i++)
                {
                    weka.core.Instance currentInst3    = insts3.instance(i);
                    double             predictedClass3 = cl3.classifyInstance(currentInst3);
                    if (predictedClass3 == insts3.instance(i).classValue())
                    {
                        numCorrect3++;
                    }
                }
                textBox5.Text = numCorrect3 + " out of " + testSize3 + " correct (" +
                                (double)((double)numCorrect3 / (double)testSize3 * 100.0) + "%)";

                //////////Artificial neural network
                //dosya okuma
                weka.core.Instances insts4 = new weka.core.Instances(new java.io.FileReader(filename));
                insts4.setClassIndex(insts4.numAttributes() - 1);

                cl4 = new weka.classifiers.functions.MultilayerPerceptron();


                //filling missing values
                weka.filters.Filter missingval4 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, missingval4);

                //Convert to dummy attribute
                weka.filters.Filter dummy4 = new weka.filters.unsupervised.attribute.NominalToBinary();
                dummy4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, dummy4);

                //normalize numeric attribute
                weka.filters.Filter myNormalized4 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, myNormalized4);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom4 = new weka.filters.unsupervised.instance.Randomize();
                myRandom4.setInputFormat(insts4);
                insts4 = weka.filters.Filter.useFilter(insts4, myRandom4);

                int trainSize4             = insts4.numInstances() * percentSplit / 100;
                int testSize4              = insts4.numInstances() - trainSize4;
                weka.core.Instances train4 = new weka.core.Instances(insts4, 0, trainSize4);

                cl4.buildClassifier(train4);

                string str4 = cl4.toString();

                int numCorrect4 = 0;
                for (int i = trainSize4; i < insts4.numInstances(); i++)
                {
                    weka.core.Instance currentInst4    = insts4.instance(i);
                    double             predictedClass4 = cl4.classifyInstance(currentInst4);
                    if (predictedClass4 == insts4.instance(i).classValue())
                    {
                        numCorrect4++;
                    }
                }

                textBox6.Text = numCorrect4 + " out of " + testSize4 + " correct (" +
                                (double)((double)numCorrect4 / (double)testSize4 * 100.0) + "%)";



                ///////Support Vector Machine
                // dosya okuma
                weka.core.Instances insts5 = new weka.core.Instances(new java.io.FileReader(filename));
                insts5.setClassIndex(insts5.numAttributes() - 1);

                cl5 = new weka.classifiers.functions.SMO();


                //filling missing values
                weka.filters.Filter missingval5 = new weka.filters.unsupervised.attribute.ReplaceMissingValues();
                missingval5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, missingval5);

                //Convert to dummy attribute
                weka.filters.Filter dummy5 = new weka.filters.unsupervised.attribute.NominalToBinary();
                dummy5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, dummy5);

                //normalize numeric attribute
                weka.filters.Filter myNormalized5 = new weka.filters.unsupervised.instance.Normalize();
                myNormalized5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, myNormalized5);

                //randomize the order of the instances in the dataset.
                weka.filters.Filter myRandom5 = new weka.filters.unsupervised.instance.Randomize();
                myRandom5.setInputFormat(insts5);
                insts5 = weka.filters.Filter.useFilter(insts5, myRandom5);

                int trainSize5             = insts5.numInstances() * percentSplit / 100;
                int testSize5              = insts5.numInstances() - trainSize5;
                weka.core.Instances train5 = new weka.core.Instances(insts5, 0, trainSize5);

                cl5.buildClassifier(train5);

                string str5 = cl5.toString();

                int numCorrect5 = 0;
                for (int i = trainSize5; i < insts5.numInstances(); i++)
                {
                    weka.core.Instance currentInst5    = insts5.instance(i);
                    double             predictedClass5 = cl5.classifyInstance(currentInst5);
                    if (predictedClass5 == insts5.instance(i).classValue())
                    {
                        numCorrect5++;
                    }
                }

                textBox7.Text = numCorrect5 + " out of " + testSize5 + " correct (" +
                                (double)((double)numCorrect5 / (double)testSize5 * 100.0) + "%)";



                string result1 = textBox3.Text;
                string output1 = result1.Split('(', ')')[1];
                output1 = output1.Remove(output1.Length - 1);
                double r1 = Convert.ToDouble(output1);

                string result2 = textBox4.Text;
                string output2 = result2.Split('(', ')')[1];
                output2 = output2.Remove(output2.Length - 1);
                double r2 = Convert.ToDouble(output2);

                string result3 = textBox5.Text;
                string output3 = result3.Split('(', ')')[1];
                output3 = output3.Remove(output3.Length - 1);
                double r3 = Convert.ToDouble(output3);

                string result4 = textBox6.Text;
                string output4 = result4.Split('(', ')')[1];
                output4 = output4.Remove(output4.Length - 1);
                double r4 = Convert.ToDouble(output4);

                string result5 = textBox7.Text;
                string output5 = result5.Split('(', ')')[1];
                output5 = output5.Remove(output5.Length - 1);
                double r5 = Convert.ToDouble(output5);


                double[] max_array = new double[] { r1, r2, r3, r4, r5 };

                double max = max_array.Max();
                if (r1 == max)
                {
                    textBox8.Text = "Best Algoritm is Decision Tree Algorithm ";
                }
                else if (r2 == max)
                {
                    textBox8.Text = "Best Algoritm is Naive Bayes Algorithm ";
                }
                else if (r3 == max)
                {
                    textBox8.Text = "Best Algoritm is K-Nearest Neighbour Algorithm ";
                }
                else if (r4 == max)
                {
                    textBox8.Text = "Best Algoritm is Artificial Neural Network Algorithm ";
                }
                else if (r5 == max)
                {
                    textBox8.Text = "Best Algoritm is Support Vector Machine Algorithm ";
                }
            }
        }
Exemplo n.º 29
0
    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        try {
            java.io.StringReader   stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader   = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances thisData = new weka.core.Instances(buffReader);             //source.getDataSet();
            if (thisData.classIndex() == -1)
            {
                thisData.setClassIndex(thisData.numAttributes() - 1);
            }

            weka.core.Instances thisUniqueData = new weka.core.Instances(thisData);
            if (thisUniqueData.classIndex() == -1)
            {
                thisUniqueData.setClassIndex(thisUniqueData.numAttributes() - 1);
            }
            thisUniqueData.delete();

            if (allUniqueData == null)
            {
                allUniqueData = new weka.core.Instances(thisData);
                if (allUniqueData.classIndex() == -1)
                {
                    allUniqueData.setClassIndex(allUniqueData.numAttributes() - 1);
                }
                allUniqueData.delete();
            }

            weka.core.InstanceComparator com = new weka.core.InstanceComparator(false);

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < allUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i), allUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                {
                    allUniqueData.add(thisData.instance(i));
                }
                else
                {
                    dupInstances++;
                }
            }

            for (int i = 0; i < thisData.numInstances(); i++)
            {
                bool dup = false;
                for (int j = 0; j < thisUniqueData.numInstances(); j++)
                {
                    if (com.compare(thisData.instance(i), thisUniqueData.instance(j)) == 0)
                    {
                        Debug.Log("Duplicate found!");
                        dup = true;
                        break;
                    }
                }
                if (!dup)
                {
                    thisUniqueData.add(thisData.instance(i));
                }
                else
                {
                    dupInstancesSamePlayer++;
                }
            }


            //Debug.Log("All Data Instance Count = " + thisData.numInstances());
            //Debug.Log("Unique Data Instance Count = " + thisUniqueData.numInstances());
            //Debug.Log("Done!");
        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
    }
Exemplo n.º 30
0
        private void Classify(string path)
        {
            readyToTest = false; // initialize flag

            // Try reading file, if failed exit function
            insts = ReadFile(path);
            if (insts == null)
            {
                // Error occured reading file, display error message
                MessageBox.Show("Instances are null!", "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return;
            }

            var form = Form.ActiveForm as Form1; // get the current form object

            // Reset UI and lists
            succesRates.Clear();
            classifiers.Clear();
            form.inputPanel.Controls.Clear();
            inputObjects.Clear();
            form.textMostSuccessful.Text = "";
            form.testResult.Text         = "";

            // Place attribute inputs on UI, max 18, numeric and nominal
            int offsetV = 60;
            int offsetH = 10;
            int width   = 75;
            int height  = 30;

            for (int i = 0; i < insts.numAttributes() - 1; i++)
            {
                // Create and place label
                Label label = new Label();
                label.Width    = width;
                label.Height   = height;
                label.Text     = insts.attribute(i).name();
                label.Parent   = form.inputPanel;
                label.Location = new Point((width * (i % 8)) + offsetH, (height * (i / 8)) + (offsetV * (i / 8)));

                // NumericUpDown for numeric and ComboBox for nominal values
                if (insts.attribute(i).isNumeric())
                {
                    NumericUpDown nud = new NumericUpDown();
                    nud.Width    = width - 10;
                    nud.Height   = height;
                    nud.Parent   = form.inputPanel;
                    nud.Location = new Point((width * (i % 8)) + offsetH, (height * (i / 8)) + (offsetV * (i / 8)) + height);
                    inputObjects.Add(new UserInput(nud));
                }
                else
                {
                    string[] values   = insts.attribute(i).toString().Split('{', '}')[1].Split(',');
                    ComboBox comboBox = new ComboBox();
                    comboBox.DataSource = values;
                    comboBox.Width      = width - 10;
                    comboBox.Height     = height;
                    comboBox.Parent     = form.inputPanel;
                    comboBox.Location   = new Point((width * (i % 8)) + offsetH, (height * (i / 8)) + (offsetV * (i / 8)) + height);
                    inputObjects.Add(new UserInput(comboBox));
                }
            }

            // Set train and test sizes
            trainSize = insts.numInstances() * percentSplit / 100;
            testSize  = insts.numInstances() - trainSize;

            // Set target attribute
            insts.setClassIndex(insts.numAttributes() - 1);

            // Randomize
            weka.filters.Filter rndFilter = new weka.filters.unsupervised.instance.Randomize();
            rndFilter.setInputFormat(insts);
            insts = weka.filters.Filter.useFilter(insts, rndFilter);


            // Start threads for each method
            Thread t_SuccessNb = new Thread(() => CalculateSuccessForNb(insts));

            t_SuccessNb.Start();

            Thread t_SuccessKn = new Thread(() => CalculateSuccessForKn(insts));

            t_SuccessKn.Start();

            Thread t_SuccessDt = new Thread(() => CalculateSuccessForDt(insts));

            t_SuccessDt.Start();

            Thread t_SuccessAnn = new Thread(() => CalculateSuccessForAnn(insts));

            t_SuccessAnn.Start();

            Thread t_SuccessSvm = new Thread(() => CalculateSuccessForSvm(insts));

            t_SuccessSvm.Start();

            // Wait for threads
            t_SuccessNb.Join();
            t_SuccessKn.Join();
            t_SuccessDt.Join();
            t_SuccessAnn.Join();
            t_SuccessSvm.Join();

            // Find out which algorithm has the best success rate
            foreach (var item in succesRates)
            {
                if (highestSuccessRate.Equals(default(KeyValuePair <Classifier, double>)) || highestSuccessRate.Value < item.Value)
                {
                    highestSuccessRate = item;
                }
            }
            form.textMostSuccessful.Text = "Most successful algorithm is " + highestSuccessRate.Key + " and it will be used for testing.";
            readyToTest = true; // switch flag
        }
Exemplo n.º 31
0
        public void classifyTest()
        {
            try
            {
                CSV2Arff();
                java.io.FileReader  arrfFile = new java.io.FileReader("D:/final_version/Gesture-Gis-master/GestureGis2/ComparisonFeaturefile.arff");
                weka.core.Instances insts    = new weka.core.Instances(arrfFile);
                //weka.core.Instances insts2 = new weka.core.Instances(new java.io.FileReader("D:/Gesture-Gis-master/GestureGis2/ComparisonFeaturefile.arff"));
                insts.setClassIndex(insts.numAttributes() - 1);

                //int percentSplit = 66;

                weka.classifiers.Classifier cl = new weka.classifiers.trees.J48();
                //Console.WriteLine("Performing " + percentSplit + "% split evaluation.");

                //randomize the order of the instances in the dataset.
                //weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                //myRandom.setInputFormat(insts);
                //insts = weka.filters.Filter.useFilter(insts, myRandom);
                int count                 = insts.numInstances();
                int trainSize             = count - 1;
                int testSize              = count - trainSize;
                weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);

                cl.buildClassifier(train);
                //weka.core.Instance current = insts2.instance(0);
                int numCorrect = 0;

                /*for (int i = trainSize; i < insts.numInstances(); i++)
                 * {
                 *  weka.core.Instance currentInst = insts.instance(i);
                 *  double predictedClass = cl.classifyInstance(currentInst);
                 *  if (predictedClass == insts.instance(i).classValue())
                 *      numCorrect++;
                 * }*/
                int index = count - 1;
                weka.core.Instance currentInst    = insts.instance(index);
                double             predictedClass = cl.classifyInstance(currentInst);
                int pre = (int)predictedClass;
                if (predictedClass == insts.instance(index).classValue())
                {
                    numCorrect++;
                }
                //insts.instance(index).classAttribute();
                //insts.attribute(11);
                string s = insts.toString();
                s = s.Substring(s.IndexOf("{") + 1);
                s = s.Substring(0, s.IndexOf("}"));
                s = s.Substring(0, s.Length);
                string[] ae = s.Split(',');

                /*ArrayList arr = new ArrayList();
                 * string path_class = @"D:\final_version\Gesture-Gis-master\GestureGis2\Classfile.txt";
                 * using (StreamReader reader = new StreamReader(path_class))
                 * {
                 *  while (!reader.EndOfStream)
                 *  {
                 *      arr.Add(reader.ReadLine());
                 *  }
                 *  reader.Close();
                 * }*/
                PredictedClassbyWeka = (string)(ae[pre]);
                arrfFile.close();

                //insts.instance(index).attribute(3);

                /*System.Diagnostics.Debug.WriteLine(numCorrect + " out of " + testSize + " correct (" +
                 *         (double)((double)numCorrect / (double)testSize * 100.0) + "%)");
                 * Console.WriteLine(numCorrect + " out of " + testSize + " correct (" +
                 *         (double)((double)numCorrect / (double)testSize * 100.0) + "%)");*/
            }
            catch (java.lang.Exception ex)
            {
                ex.printStackTrace();
            }
        }
Exemplo n.º 32
0
        public weka.core.Instances[] GenerateRegressionInstances(int rIdx)
        {
            var instances = new weka.core.Instances[3];
            string dataName = ((Rounds)rIdx).ToString().ToLower() + "_{0}_data";
            for(int i = 0; i < 3; i++)
            {
                var atts = generateStateAttributes(rIdx);
                string className = i == 0 ? "Fold" : i == 1 ? "Call" : "Raise";
                atts.addElement(new weka.core.Attribute(className));
                var data = new weka.core.Instances(string.Format(dataName, className.ToLower()), atts, 0);

                data.setClassIndex(data.numAttributes() - 1);
                instances[i] = data;
            }
            return instances;
        }
    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        String results = "";

        try {
            java.io.StringReader   stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader   = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances data = new weka.core.Instances(buffReader);             //source.getDataSet();
            // setting class attribute if the data format does not provide this information
            // For example, the XRFF format saves the class attribute information as well
            if (data.classIndex() == -1)
            {
                data.setClassIndex(data.numAttributes() - 1);
            }

            weka.classifiers.Classifier cl;
            for (int i = 3; i < data.numInstances(); i++)
            {
                cl = new weka.classifiers.bayes.NaiveBayes();
                //cl = new weka.classifiers.trees.J48();
                //cl = new weka.classifiers.lazy.IB1();
                //cl = new weka.classifiers.functions.MultilayerPerceptron();
                ((weka.classifiers.functions.MultilayerPerceptron)cl).setHiddenLayers("12");

                weka.core.Instances subset = new weka.core.Instances(data, 0, i);
                cl.buildClassifier(subset);

                weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(subset);
                eval.crossValidateModel(cl, subset, 3, new java.util.Random(1));
                results = results + eval.pctCorrect();                 // For accuracy measurement
                /* For Mathews Correlation Coefficient */
                //double TP = eval.numTruePositives(1);
                //double FP = eval.numFalsePositives(1);
                //double TN = eval.numTrueNegatives(1);
                //double FN = eval.numFalseNegatives(1);
                //double correlationCoeff = ((TP*TN)-(FP*FN))/Math.Sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN));
                //results = results + correlationCoeff;
                if (i != data.numInstances() - 1)
                {
                    results = results + ", ";
                }
                if (i == data.numInstances() - 1)
                {
                    Debug.Log("Player: " + playerID + ", Num Maps: " + data.numInstances() + ", AUC: " + eval.areaUnderROC(1));
                }
            }
        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
        // Write values to file for a matlab read
        // For accuracy
        StreamWriter writer = new StreamWriter("DataForMatlab/" + playerID + "_CrossFoldValidations_NeuralNet.txt");

        //StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldCorrCoeff.txt"); // For mathews cc
        writer.WriteLine(results);
        writer.Close();
        Debug.Log(playerID + " has been written to file");
    }
Exemplo n.º 34
0
        public static string classifyTest(string file, string classifier)
        {
            string data = "No data";

            try
            {
                //weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("C:\\Users\\kinli\\source\\repos\\WebApplication2\\WebApplication2\\iris.arff"));
                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(file));
                insts.setClassIndex(insts.numAttributes() - 1);
                weka.classifiers.Classifier cl = new weka.classifiers.trees.J48();

                if (classifier == "J48")
                {
                    cl = new weka.classifiers.trees.J48();
                }
                else if (classifier == "MLP")
                {
                    cl = new weka.classifiers.functions.MultilayerPerceptron();
                }
                else if (classifier == "NaiveBayes")
                {
                    cl = new weka.classifiers.bayes.NaiveBayes();
                }

                //data = ("Performing " + percentSplit + "% split evaluation.\n");
                data = ("Performing use training set evaluation.\n");
                //randomize the order of the instances in the dataset.

                weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
                myRandom.setInputFormat(insts);
                insts = weka.filters.Filter.useFilter(insts, myRandom);

                /*
                 * int trainSize = insts.numInstances() * percentSplit / 100;
                 * int testSize = insts.numInstances() - trainSize;
                 * weka.core.Instances train = new weka.core.Instances(insts, 0, trainSize);
                 *
                 * cl.buildClassifier(train);
                 * int numCorrect = 0;
                 * for (int i = trainSize; i < insts.numInstances(); i++)
                 * {
                 *  weka.core.Instance currentInst = insts.instance(i);
                 *  double predictedClass = cl.classifyInstance(currentInst);
                 *  if (predictedClass == insts.instance(i).classValue())
                 *      numCorrect++;
                 * }*/
                cl.buildClassifier(insts);

                int numCorrect = 0;
                for (int i = 0; i < insts.numInstances(); i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = cl.classifyInstance(currentInst);
                    if (predictedClass == insts.instance(i).classValue())
                    {
                        numCorrect++;
                    }
                }
                data = data + (numCorrect + " out of " + insts.numInstances() + " correct (" +
                               (double)((double)numCorrect / (double)insts.numInstances() * 100.0) + "%)");
            }
            catch (java.lang.Exception ex)
            {
                data = "Error";
                ex.printStackTrace();
            }
            return(data);
        }
Exemplo n.º 35
0
        private void btnLoad_Click(object sender, EventArgs e)
        {
            using (OpenFileDialog d = new OpenFileDialog())
            {
                d.Filter = "Arff File|*.arff";
                if (d.ShowDialog() == System.Windows.Forms.DialogResult.OK)
                {
                    var fileReader = new java.io.FileReader(d.FileName);
                    var instances = new weka.core.Instances(new java.io.BufferedReader(fileReader));
                    instances.setClassIndex(instances.numAttributes() - 1);
                    fileReader.close();

                    clear_all();
                    foreach (weka.core.Instance i in instances)
                    {
                        var p = new valuePoint(i.value(0), i.value(1), (int)i.classValue());
                        if (p.x < 0 || p.x >= 1 || p.y < 0 || p.y >= 1)
                            continue;
                        point_list.Add(p);
                    }
                    draw_all_points();
                    this.pictureBox1.Invalidate();
                }
            }
        }
Exemplo n.º 36
0
        private weka.core.Instances CreateEmptyInstances()
        {
            var atts = new java.util.ArrayList();
            atts.add(new weka.core.Attribute("x"));
            atts.add(new weka.core.Attribute("y"));

            if (!ckbClassIsNominal.Checked)
            {
                atts.add(new weka.core.Attribute("v"));
            }
            else
            {
                // - nominal
                var attVals = new java.util.ArrayList();
                //for(int i=0; i<MAXCLASSNUM; ++i)
                //    attVals.add(i.ToString());
                attVals.add("0");
                attVals.add("1");
                atts.add(new weka.core.Attribute("v", attVals));
            }

            weka.core.Instances data = new weka.core.Instances("MyRelation", atts, 0);
            data.setClassIndex(data.numAttributes() - 1);

            return data;
        }
Exemplo n.º 37
0
        public weka.core.Instances GenerateClassifierInstances(int rIdx)
        {
            var atts = generateStateAttributes(rIdx);

            var classVals = new weka.core.FastVector();
            classVals.addElement("Fold");
            classVals.addElement("Call");
            classVals.addElement("Raise");
            atts.addElement(new weka.core.Attribute("Action", classVals));

            var data = new weka.core.Instances(((Rounds)rIdx).ToString().ToLower() + "_data", atts, 0);

            data.setClassIndex(data.numAttributes() - 1);

            return data;
        }