Exemplo n.º 1
0
        public List <string> Classify(string model, string test)
        {
            List <string> ret = new List <string>();

            try
            {
                java.io.ObjectInputStream   ois = new java.io.ObjectInputStream(new java.io.FileInputStream(model));
                weka.classifiers.Classifier cl  = (weka.classifiers.Classifier)ois.readObject();
                ois.close();

                weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader(test));
                insts.setClassIndex(insts.numAttributes() - 1);
                for (int i = 0; i < 1; i++)
                {
                    weka.core.Instance currentInst    = insts.instance(i);
                    double             predictedClass = cl.classifyInstance(currentInst);
                    double[]           distrs         = cl.distributionForInstance(currentInst);
                    //string actual = insts.classAttribute().value((int)currentInst.classValue());
                    //string predicted = insts.classAttribute().value((int)predictedClass);
                    // System.Console.WriteLine("ID: " + (i + 1) + ", " + predicted);
                    for (int j = 0; j < distrs.Length; j++)
                    {
                        string predicted = insts.classAttribute().value(j);
                        string distr     = distrs[j].ToString("#0.000");
                        ret.Add(predicted + "," + distr);
                    }
                }
                return(ret);
            }
            catch
            {
                return(ret);
            }
        }
            public int ClassifyInstance(double[] attributes, out double[] percentages)
            {
                double classificationResult = 1.0;

                testInstance.setDataset(dataSet);
                testInstance.setClassMissing();
                dataSet.add(testInstance);
                for (int i = 0; i < attributes.Length; i++)
                {
                    testInstance.setValue(i, attributes[i]);
                }
                classificationResult = m_cl.classifyInstance(testInstance);
                dataSet.delete(0);
                percentages = m_cl.distributionForInstance(testInstance);
                return((int)classificationResult);
            }
Exemplo n.º 3
0
        public void Test2()
        {
            java.io.ObjectInputStream   ois = new java.io.ObjectInputStream(new java.io.FileInputStream("D:\\android_analysis\\som_model.model"));
            weka.classifiers.Classifier cl  = (weka.classifiers.Classifier)ois.readObject();
            ois.close();

            weka.core.Instances insts = new weka.core.Instances(new java.io.FileReader("D:\\android_analysis\\test1.arff"));
            insts.setClassIndex(insts.numAttributes() - 1);
            for (int i = 0; i < insts.numInstances(); i++)
            {
                weka.core.Instance currentInst    = insts.instance(i);
                double             predictedClass = cl.classifyInstance(currentInst);
                double[]           distrs         = cl.distributionForInstance(currentInst);
                //string actual = insts.classAttribute().value((int)currentInst.classValue());
                //string predicted = insts.classAttribute().value((int)predictedClass);
                // System.Console.WriteLine("ID: " + (i + 1) + ", " + predicted);
            }
        }
 public double[] ClassifyNewData(double[] newData)
 {
     weka.core.Instance newInstance = new weka.core.Instance(1, newData);
     newInstance.setDataset(playerData);
     return(classifier.distributionForInstance(newInstance));
 }