//--------------------------------------------------------------
        public void modify()
        {
            if (mInputTriangleBuffer == null)
            {
                OGRE_EXCEPT("Exception::ERR_INVALID_STATE", "Input triangle buffer must be set", "__FUNCTION__");
            }
            ;
            //std.map<Vector3, int, Vector3Comparator> mapExistingVertices = new std.map<Vector3, int, Vector3Comparator>();
            std_map <Vector3, int>             mapExistingVertices = new std_map <Vector3, int>(new Vector3Comparator());
            std_vector <TriangleBuffer.Vertex> vertices            = mInputTriangleBuffer.getVertices();
            std_vector <int> indices = mInputTriangleBuffer.getIndices();

            int newSize = vertices.size();

            //	for (std::vector<TriangleBuffer::Vertex>::iterator it = vertices.begin(); it!= vertices.end(); ++it)
            for (int i = 0; i < vertices.Count; i++)
            {
                //size_t currentIndex = it - vertices.begin();
                TriangleBuffer.Vertex it = vertices[i];
                int currentIndex         = i;
                if (currentIndex >= newSize)
                {
                    break;
                }
                //if (mapExistingVertices.find(it.mPosition) == mapExistingVertices.end())
                //	mapExistingVertices[it.mPosition] = currentIndex;
                if (mapExistingVertices.find(it.mPosition) == -1)
                {
                    mapExistingVertices.insert(it.mPosition, currentIndex);
                }
                else
                {
                    int existingIndex = mapExistingVertices[it.mPosition];
                    --newSize;
                    if (currentIndex == newSize)
                    {
                        //for (std::vector<int>::iterator it2 = indices.begin(); it2 != indices.end(); ++it2)
                        for (int j = 0; j < indices.Count; j++)
                        {
                            int it2 = indices[j];
                            if (it2 == currentIndex)
                            {
                                //*it2 = existingIndex;
                                indices[j] = existingIndex;
                            }
                        }
                    }
                    else
                    {
                        int lastIndex = newSize;
                        //*it = vertices[lastIndex];
                        it = vertices[lastIndex];
                        //for (std::vector<int>::iterator it2 = indices.begin(); it2 != indices.end(); ++it2)
                        for (int j = 0; j < indices.Count; j++)
                        {
                            int it2 = indices[j];
                            //if (*it2 == currentIndex)
                            if (it2 == currentIndex)
                            {
                                //*it2 = existingIndex;
                                indices[j] = existingIndex;
                            }
                            //else if (*it2 == lastIndex)
                            else if (it2 == lastIndex)
                            {
                                //*it2 = currentIndex;
                                indices[j] = currentIndex;
                            }
                        }
                    }
                }
            }
        }
Exemplo n.º 2
0
        //-----------------------------------------------------------------------
        //typedef std::vector<PathCoordinate> PathIntersection;
        public static void _extrudeIntersectionImpl(ref TriangleBuffer buffer, std_vector <MultiPath.PathCoordinate> intersection, MultiPath multiPath, Shape shape, Track shapeTextureTrack)
        {
            Vector3    intersectionLocation = multiPath.getPath((int)intersection[0].pathIndex).getPoint((int)intersection[0].pointIndex);
            Quaternion firstOrientation     = Utils._computeQuaternion(multiPath.getPath((int)intersection[0].pathIndex).getDirectionBefore((int)intersection[0].pointIndex));
            Vector3    refX = firstOrientation * Vector3.UNIT_X;
            Vector3    refZ = firstOrientation * Vector3.UNIT_Z;

            std_vector <Vector2> v2s = new std_vector <Vector2>();
            std_vector <MultiPath.PathCoordinate> coords = new std_vector <MultiPath.PathCoordinate>();
            std_vector <float> direction = new std_vector <float>();

            for (int i = 0; i < intersection.size(); ++i)
            {
                Path path       = multiPath.getPath((int)intersection[i].pathIndex);
                int  pointIndex = (int)intersection[i].pointIndex;
                if (pointIndex > 0 || path.isClosed())
                {
                    Vector3 vb  = path.getDirectionBefore(pointIndex);
                    Vector2 vb2 = new Vector2(vb.DotProduct(refX), vb.DotProduct(refZ));
                    v2s.push_back(vb2);
                    coords.push_back(intersection[i]);
                    direction.push_back(1);
                }
                if (pointIndex < path.getSegCount() || path.isClosed())
                {
                    Vector3 va  = -path.getDirectionAfter(pointIndex);
                    Vector2 va2 = new Vector2(va.DotProduct(refX), va.DotProduct(refZ));
                    v2s.push_back(va2);
                    coords.push_back(intersection[i]);
                    direction.push_back(-1);
                }
            }

            std_map <Radian, int> angles = new std_map <Radian, int>();

            for (int i = 1; i < v2s.Count; ++i)
            {
                //angles[Utils.angleTo(v2s[0], v2s[i])] = i;
                angles.insert(Utils.angleTo(v2s[0], v2s[i]), i);
            }
            std_vector <int> orderedIndices = new std_vector <int>();

            orderedIndices.push_back(0);
            //for (std_map<Radian, int>.Enumerator it = angles.begin(); it != angles.end(); ++it)
            foreach (var it in angles)
            {
                orderedIndices.push_back(it.Value);
            }
            for (int i = 0; i < orderedIndices.size(); ++i)
            {
                int    idx         = orderedIndices[i];
                int    idxBefore   = orderedIndices[Utils.modulo(i - 1, orderedIndices.Count)];
                int    idxAfter    = orderedIndices[Utils.modulo(i + 1, orderedIndices.Count)];
                Radian angleBefore = (Utils.angleBetween(v2s[idx], v2s[idxBefore]) - (Radian)Math.PI) / 2;
                Radian angleAfter  = ((Radian)Math.PI - Utils.angleBetween(v2s[idx], v2s[idxAfter])) / 2;

                int  pointIndex = (int)((int)coords[idx].pointIndex - direction[idx]);
                Path path       = multiPath.getPath((int)coords[idx].pathIndex);

                Quaternion qStd      = Utils._computeQuaternion(path.getAvgDirection(pointIndex) * direction[idx]);
                float      lineicPos = 0f;
                float      uTexCoord = path.getLengthAtPoint(pointIndex) / path.getTotalLength();

                // Shape making the joint with "standard extrusion"
                _extrudeShape(ref buffer, shape, path.getPoint(pointIndex), qStd, qStd, 1.0f, 1.0f, 1.0f, shape.getTotalLength(), uTexCoord, true, shapeTextureTrack);

                // Modified shape at the intersection
                Quaternion q = new Quaternion();
                if (direction[idx] > 0f)
                {
                    q = Utils._computeQuaternion(path.getDirectionBefore((int)coords[idx].pointIndex));
                }
                else
                {
                    q = Utils._computeQuaternion(-path.getDirectionAfter((int)coords[idx].pointIndex));
                }
                Quaternion qLeft      = q * new Quaternion(angleBefore, Vector3.UNIT_Y);
                Quaternion qRight     = q * new Quaternion(angleAfter, Vector3.UNIT_Y);
                float      scaleLeft  = 1.0f / Math.Abs(Math.Cos(angleBefore));
                float      scaleRight = 1.0f / Math.Abs(Math.Cos(angleAfter));

                uTexCoord = path.getLengthAtPoint((int)coords[idx].pointIndex) / path.getTotalLength();
                _extrudeShape(ref buffer, shape, path.getPoint((int)coords[idx].pointIndex), qLeft, qRight, 1.0f, scaleLeft, scaleRight, shape.getTotalLength(), uTexCoord, false, shapeTextureTrack);
            }
        }
        //--------------------------------------------------------------
        public void modify() {
            if (mInputTriangleBuffer == null)
                OGRE_EXCEPT("Exception::ERR_INVALID_STATE", "Input triangle buffer must be set", "__FUNCTION__");
            ;
            //std.map<Vector3, int, Vector3Comparator> mapExistingVertices = new std.map<Vector3, int, Vector3Comparator>();
            std_map<Vector3, int> mapExistingVertices = new std_map<Vector3, int>(new Vector3Comparator());
            std_vector<TriangleBuffer.Vertex> vertices = mInputTriangleBuffer.getVertices();
            std_vector<int> indices = mInputTriangleBuffer.getIndices();

            int newSize = vertices.size();

            //	for (std::vector<TriangleBuffer::Vertex>::iterator it = vertices.begin(); it!= vertices.end(); ++it)
            for (int i = 0; i < vertices.Count; i++) {
                //size_t currentIndex = it - vertices.begin();
                TriangleBuffer.Vertex it = vertices[i];
                int currentIndex = i;
                if (currentIndex >= newSize)
                    break;
                //if (mapExistingVertices.find(it.mPosition) == mapExistingVertices.end())
                //	mapExistingVertices[it.mPosition] = currentIndex;
                if (mapExistingVertices.find(it.mPosition) == -1) {
                    mapExistingVertices.insert(it.mPosition, currentIndex);
                }
                else {
                    int existingIndex = mapExistingVertices[it.mPosition];
                    --newSize;
                    if (currentIndex == newSize) {
                        //for (std::vector<int>::iterator it2 = indices.begin(); it2 != indices.end(); ++it2)
                        for (int j = 0; j < indices.Count; j++) {
                            int it2 = indices[j];
                            if (it2 == currentIndex) {
                                //*it2 = existingIndex;
                                indices[j] = existingIndex;
                            }
                        }
                    }
                    else {
                        int lastIndex = newSize;
                        //*it = vertices[lastIndex];
                        it = vertices[lastIndex];
                        //for (std::vector<int>::iterator it2 = indices.begin(); it2 != indices.end(); ++it2)
                        for (int j = 0; j < indices.Count; j++) {
                            int it2 = indices[j];
                            //if (*it2 == currentIndex)
                            if (it2 == currentIndex) {
                                //*it2 = existingIndex;
                                indices[j] = existingIndex;
                            }
                            //else if (*it2 == lastIndex)
                            else if (it2 == lastIndex) {
                                //*it2 = currentIndex;
                                indices[j] = currentIndex;
                            }
                        }
                    }
                }
            }
        }
Exemplo n.º 4
0
        //    *
        //	 * Executes the Constrained Delaunay Triangulation algorithm
        //	 * @param output A vector of index where is outputed the resulting triangle indexes
        //	 * @param outputVertices A vector of vertices where is outputed the resulting triangle vertices
        //	 * @exception Ogre::InvalidStateException Either shape or multishape or segment list must be defined
        //
        //void triangulate(ref List<int>& output, ref List<Vector2>& outputVertices) const;
        public void triangulate(std_vector <int> output, PointList outputVertices)
        {
            if (mShapeToTriangulate == null && mMultiShapeToTriangulate == null && mSegmentListToTriangulate == null)
            {
                throw new NullReferenceException("Ogre::Exception::ERR_INVALID_STATE," + "Either shape or multishape or segment list must be defined!" + ",  Procedural::Triangulator::triangulate(std::vector<int>&, PointList&)");
            }
            //Ogre::Timer mTimer;
            //Mogre.Timer mTimer = new Timer();
            //mTimer.Reset();
            DelaunayTriangleBuffer dtb = new std_list <Triangle>();
            // Do the Delaunay triangulation
            std_vector <int> segmentListIndices = new std_vector <int>();

            if (mShapeToTriangulate != null)
            {
                outputVertices = new std_vector <Vector2>(mShapeToTriangulate.getPoints());
                for (int i = 0; i < mShapeToTriangulate.getSegCount(); ++i)
                {
                    segmentListIndices.push_back(i);
                    segmentListIndices.push_back(mShapeToTriangulate.getBoundedIndex(i + 1));
                }
            }
            else if (mMultiShapeToTriangulate != null)
            {
                outputVertices = new std_vector <Vector2>(mMultiShapeToTriangulate.getPoints());
                int index = 0;
                for (int i = 0; i < mMultiShapeToTriangulate.getShapeCount(); ++i)
                {
                    Shape shape = mMultiShapeToTriangulate.getShape((uint)i);
                    for (int j = 0; j < shape.getSegCount(); j++)
                    {
                        segmentListIndices.push_back(index + j);
                        segmentListIndices.push_back(index + shape.getBoundedIndex(j + 1));
                    }
                    index += shape.getSegCount();
                }
            }
            else if (mSegmentListToTriangulate != null)
            {
                //std_map<Vector2, int, Vector2Comparator> backMap;
                std_map <Vector2, int> backMap = new std_map <Vector2, int>(new Vector2Comparator());
                //for (std::vector<Segment2D>::iterator it = mSegmentListToTriangulate->begin(); it!= mSegmentListToTriangulate->end(); it++)
                foreach (var it in mSegmentListToTriangulate)
                {
                    if ((it.mA - it.mB).SquaredLength < 1e-6)
                    {
                        continue;
                    }

                    //std::map<Vector2, int, Vector2Comparator>::iterator it2 = backMap.find(it->mA);
                    int it2_pos = backMap.find(it.mA);
                    //if (it2 != backMap.end())
                    if (it2_pos != -1)
                    {
                        //segmentListIndices.push_back(it2->second);
                        segmentListIndices.push_back(backMap[it.mA]);
                    }
                    else
                    {
                        //backMap[it->mA] = outputVertices.size();
                        backMap.insert(it.mA, outputVertices.size());
                        segmentListIndices.push_back(outputVertices.size());
                        outputVertices.push_back(it.mA);
                    }

                    //it2 = backMap.find(it.mB);
                    it2_pos = backMap.find(it.mB);
                    //if (it2 != backMap.end())
                    if (it2_pos != -1)
                    {
                        //segmentListIndices.push_back(it2.second);
                        segmentListIndices.push_back(backMap[it.mB]);
                    }
                    else
                    {
                        //backMap[it->mB] = outputVertices.size();
                        backMap.insert(it.mB, outputVertices.size());
                        segmentListIndices.push_back(outputVertices.size());
                        outputVertices.push_back(it.mB);
                    }
                }

                if (mManualSuperTriangle != null)
                {
                    Triangle superTriangle = new Triangle(outputVertices);
                    for (int i = 0; i < 3; i++)
                    {
                        //std::map<Vector2, int, Vector2Comparator>::iterator it = backMap.find(mManualSuperTriangle->mPoints[i]);
                        int it_pos = backMap.find(mManualSuperTriangle.mPoints[i]);
                        //if (it != backMap.end())
                        if (it_pos != -1)
                        {
                            //segmentListIndices.push_back(it->second);
                            //superTriangle.i[i] = it->second;
                            superTriangle.i[i] = backMap[mManualSuperTriangle.mPoints[i]];
                        }
                        else
                        {
                            //backMap[mManualSuperTriangle->mPoints[i]] = outputVertices.size();
                            backMap.insert(mManualSuperTriangle.mPoints[i], outputVertices.size());
                            //segmentListIndices.push_back(outputVertices.size());
                            superTriangle.i[i] = outputVertices.size();
                            outputVertices.push_back(mManualSuperTriangle.mPoints[i]);
                        }
                    }

                    dtb.push_back(superTriangle);
                }
            }
            //Utils::log("Triangulator preparation : " + StringConverter::toString(mTimer.getMicroseconds() / 1000.0f) + " ms");
            delaunay(outputVertices, ref dtb);
            //Utils::log("Triangulator delaunay : " + StringConverter::toString(mTimer.getMicroseconds() / 1000.0f) + " ms");
            // Add contraints
            _addConstraints(ref dtb, outputVertices, segmentListIndices);
            //Utils::log("Triangulator constraints : " + StringConverter::toString(mTimer.getMicroseconds() / 1000.0f) + " ms");
            //Outputs index buffer
            //for (DelaunayTriangleBuffer::iterator it = dtb.begin(); it!=dtb.end(); ++it)
            foreach (var it in dtb)
            {
                if (!it.isDegenerate())
                {
                    output.push_back(it.i[0]);
                    output.push_back(it.i[1]);
                    output.push_back(it.i[2]);
                }
            }
            // Remove super triangle
            if (mRemoveOutside)
            {
                outputVertices.pop_back();
                outputVertices.pop_back();
                outputVertices.pop_back();
            }
            //Utils::log("Triangulator output : " + StringConverter::toString(mTimer.getMicroseconds() / 1000.0f) + " ms");
        }