/// <summary>
 /// Creates an instance with a sampled (parameterised) curve.
 /// </summary>
 /// <param name="samplePoints">  the points where we sample the curve </param>
 /// <param name="curve">  a parameterised curve  </param>
 public ParameterizedCurveVectorFunction(double[] samplePoints, ParameterizedCurve curve)
 {
     ArgChecker.notEmpty(samplePoints, "samplePoints");
     ArgChecker.notNull(curve, "curve");
     _samplePoints = Arrays.copyOf(samplePoints, samplePoints.Length);
     _curve        = curve;
 }
        /// <summary>
        /// Solves the system Ax = y for the unknown vector x, where A is a tridiagonal matrix and y is a vector.
        /// This takes order n operations where n is the size of the system
        /// (number of linear equations), as opposed to order n^3 for the general problem. </summary>
        /// <param name="aM"> tridiagonal matrix </param>
        /// <param name="b"> known vector (must be same length as rows/columns of matrix) </param>
        /// <returns> vector (as an array of doubles) with same length as y </returns>
        public static double[] solvTriDag(TridiagonalMatrix aM, double[] b)
        {
            ArgChecker.notNull(aM, "null matrix");
            ArgChecker.notNull(b, "null vector");
            double[] d = aM.Diagonal;     //b is modified, so get copy of diagonal
            int      n = d.Length;

            ArgChecker.isTrue(n == b.Length, "vector y wrong length for matrix");
            double[] y = Arrays.copyOf(b, n);

            double[] l = aM.LowerSubDiagonalData;
            double[] u = aM.UpperSubDiagonalData;

            double[] x = new double[n];
            for (int i = 1; i < n; i++)
            {
                double m = l[i - 1] / d[i - 1];
                d[i] = d[i] - m * u[i - 1];
                y[i] = y[i] - m * y[i - 1];
            }

            x[n - 1] = y[n - 1] / d[n - 1];

            for (int i = n - 2; i >= 0; i--)
            {
                x[i] = (y[i] - u[i] * x[i + 1]) / d[i];
            }

            return(x);
        }
Exemplo n.º 3
0
 /// <summary>
 /// Adds two matrices. This operation can only be performed if the matrices are of the same type and dimensions. </summary>
 /// <param name="m1"> The first matrix, not null </param>
 /// <param name="m2"> The second matrix, not null </param>
 /// <returns> The sum of the two matrices </returns>
 /// <exception cref="IllegalArgumentException"> If the matrices are not of the same type, if the matrices are not the same shape. </exception>
 public virtual Matrix add(Matrix m1, Matrix m2)
 {
     ArgChecker.notNull(m1, "m1");
     ArgChecker.notNull(m2, "m2");
     if (m1 is DoubleArray)
     {
         if (m2 is DoubleArray)
         {
             DoubleArray array1 = (DoubleArray)m1;
             DoubleArray array2 = (DoubleArray)m2;
             return(array1.plus(array2));
         }
         throw new System.ArgumentException("Tried to add a " + m1.GetType() + " and " + m2.GetType());
     }
     else if (m1 is DoubleMatrix)
     {
         if (m2 is DoubleMatrix)
         {
             DoubleMatrix matrix1 = (DoubleMatrix)m1;
             DoubleMatrix matrix2 = (DoubleMatrix)m2;
             return(matrix1.plus(matrix2));
         }
         throw new System.ArgumentException("Tried to add a " + m1.GetType() + " and " + m2.GetType());
     }
     throw new System.NotSupportedException();
 }
 //-------------------------------------------------------------------------
 public virtual System.Func <DoubleArray, DoubleMatrix[]> differentiate(System.Func <DoubleArray, DoubleArray> function, System.Func <DoubleArray, bool> domain)
 {
     ArgChecker.notNull(function, "function");
     System.Func <DoubleArray, DoubleMatrix>   jacFunc = vectorFieldDiff.differentiate(function, domain);
     System.Func <DoubleArray, DoubleMatrix[]> hFunc   = maxtrixFieldDiff.differentiate(jacFunc, domain);
     return(new FuncAnonymousInnerClass2(this, hFunc));
 }
Exemplo n.º 5
0
        /// <summary>
        /// Compute $A^T A$, where A is a matrix. </summary>
        /// <param name="a"> The matrix </param>
        /// <returns> The result of $A^T A$ </returns>
        public virtual DoubleMatrix matrixTransposeMultiplyMatrix(DoubleMatrix a)
        {
            ArgChecker.notNull(a, "a");
            int n = a.rowCount();
            int m = a.columnCount();

//JAVA TO C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
//ORIGINAL LINE: double[][] data = new double[m][m];
            double[][] data = RectangularArrays.ReturnRectangularDoubleArray(m, m);
            for (int i = 0; i < m; i++)
            {
                double sum = 0d;
                for (int k = 0; k < n; k++)
                {
                    sum += a.get(k, i) * a.get(k, i);
                }
                data[i][i] = sum;

                for (int j = i + 1; j < m; j++)
                {
                    sum = 0d;
                    for (int k = 0; k < n; k++)
                    {
                        sum += a.get(k, i) * a.get(k, j);
                    }
                    data[i][j] = sum;
                    data[j][i] = sum;
                }
            }
            return(DoubleMatrix.ofUnsafe(data));
        }
Exemplo n.º 6
0
 /// <summary>
 /// Creates an instance.
 /// <para>
 /// If the size of the domain is very small or very large, consider re-scaling first.
 /// If this value is too small, the result will most likely be dominated by noise.
 /// Use around 10<sup>-5</sup> times the domain size.
 ///
 /// </para>
 /// </summary>
 /// <param name="differenceType">  the differencing type to be used in calculating the gradient function </param>
 /// <param name="eps">  the step size used to approximate the derivative </param>
 public VectorFieldFirstOrderDifferentiator(FiniteDifferenceType differenceType, double eps)
 {
     ArgChecker.notNull(differenceType, "differenceType");
     this.differenceType = differenceType;
     this.eps            = eps;
     this.twoEps         = 2 * eps;
 }
        public override DoubleMatrix apply(TridiagonalMatrix x)
        {
            ArgChecker.notNull(x, "x");
            double[] a = x.DiagonalData;
            double[] b = x.UpperSubDiagonalData;
            double[] c = x.LowerSubDiagonalData;
            int      n = a.Length;
            int      i, j, k;

            double[] theta = new double[n + 1];
            double[] phi   = new double[n];

            theta[0] = 1.0;
            theta[1] = a[0];
            for (i = 2; i <= n; i++)
            {
                theta[i] = a[i - 1] * theta[i - 1] - b[i - 2] * c[i - 2] * theta[i - 2];
            }

            if (theta[n] == 0.0)
            {
                throw new MathException("Zero determinant. Cannot invert the matrix");
            }

            phi[n - 1] = 1.0;
            phi[n - 2] = a[n - 1];
            for (i = n - 3; i >= 0; i--)
            {
                phi[i] = a[i + 1] * phi[i + 1] - b[i + 1] * c[i + 1] * phi[i + 2];
            }

            double product;

//JAVA TO C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
//ORIGINAL LINE: double[][] res = new double[n][n];
            double[][] res = RectangularArrays.ReturnRectangularDoubleArray(n, n);

            for (j = 0; j < n; j++)
            {
                for (i = 0; i <= j; i++)
                {
                    product = 1.0;
                    for (k = i; k < j; k++)
                    {
                        product *= b[k];
                    }
                    res[i][j] = ((i + j) % 2 == 0 ? 1 : -1) * product * theta[i] * phi[j] / theta[n];
                }
                for (i = j + 1; i < n; i++)
                {
                    product = 1.0;
                    for (k = j; k < i; k++)
                    {
                        product *= c[k];
                    }
                    res[i][j] = ((i + j) % 2 == 0 ? 1 : -1) * product * theta[j] * phi[i] / theta[n];
                }
            }
            return(DoubleMatrix.copyOf(res));
        }
Exemplo n.º 8
0
        /// <summary>
        /// Finds the node sensitivity.
        /// </summary>
        /// <param name="pp">  the <seealso cref="PiecewisePolynomialResultsWithSensitivity"/> </param>
        /// <param name="xKey">  the key </param>
        /// <returns> Node sensitivity value at x=xKey </returns>
        public virtual DoubleArray nodeSensitivity(PiecewisePolynomialResultsWithSensitivity pp, double xKey)
        {
            ArgChecker.notNull(pp, "null pp");
            ArgChecker.isFalse(double.IsNaN(xKey), "xKey containing NaN");
            ArgChecker.isFalse(double.IsInfinity(xKey), "xKey containing Infinity");

            if (pp.Dimensions > 1)
            {
                throw new System.NotSupportedException();
            }

            DoubleArray knots    = pp.Knots;
            int         nKnots   = knots.size();
            int         interval = FunctionUtils.getLowerBoundIndex(knots, xKey);

            if (interval == nKnots - 1)
            {
                interval--;   // there is 1 less interval that knots
            }

            double       s      = xKey - knots.get(interval);
            DoubleMatrix a      = pp.getCoefficientSensitivity(interval);
            int          nCoefs = a.rowCount();

            DoubleArray res = a.row(0);

            for (int i = 1; i < nCoefs; i++)
            {
                res = (DoubleArray)MA.scale(res, s);
                res = (DoubleArray)MA.add(res, a.row(i));
            }

            return(res);
        }
Exemplo n.º 9
0
        public static int[] fromTensorIndex(int index, int[] dimensions)
        {
            ArgChecker.notNull(dimensions, "dimensions");
            int dim = dimensions.Length;

            int[] res = new int[dim];

            int product = 1;

            int[] products = new int[dim - 1];
            for (int i = 0; i < dim - 1; i++)
            {
                product    *= dimensions[i];
                products[i] = product;
            }

            int a = index;

            for (int i = dim - 1; i > 0; i--)
            {
                res[i] = a / products[i - 1];
                a     -= res[i] * products[i - 1];
            }
            res[0] = a;

            return(res);
        }
        public virtual double?[] getRoots(RealPolynomialFunction1D function)
        {
            ArgChecker.notNull(function, "function");
            double[] coeffs = function.Coefficients;
            int      l      = coeffs.Length - 1;

//JAVA TO C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
//ORIGINAL LINE: double[][] hessianDeref = new double[l][l];
            double[][] hessianDeref = RectangularArrays.ReturnRectangularDoubleArray(l, l);
            for (int i = 0; i < l; i++)
            {
                hessianDeref[0][i] = -coeffs[l - i - 1] / coeffs[l];
                for (int j = 1; j < l; j++)
                {
                    hessianDeref[j][i] = 0;
                    if (i != l - 1)
                    {
                        hessianDeref[i + 1][i] = 1;
                    }
                }
            }
            RealMatrix hessian = new Array2DRowRealMatrix(hessianDeref);

            double[]  d      = (new EigenDecomposition(hessian)).RealEigenvalues;
            double?[] result = new double?[d.Length];
            for (int i = 0; i < d.Length; i++)
            {
                result[i] = d[i];
            }
            return(result);
        }
Exemplo n.º 11
0
 /// <summary>
 /// Creates an instance.
 /// </summary>
 /// <param name="qr"> The result of the QR decomposition, not null </param>
 public QRDecompositionCommonsResult(QRDecomposition qr)
 {
     ArgChecker.notNull(qr, "qr");
     _q          = CommonsMathWrapper.unwrap(qr.Q);
     _r          = CommonsMathWrapper.unwrap(qr.R);
     _qTranspose = _q.transpose();
     _solver     = qr.Solver;
 }
 /// <summary>
 /// Uses the parameters to create a function.
 /// </summary>
 /// <param name="x">  the value at which the function is to be evaluated, not null </param>
 /// <returns> a function that is always evaluated at <i>x</i> for different values of the parameters </returns>
 public virtual System.Func <T, U> asFunctionOfParameters(S x)
 {
     ArgChecker.notNull(x, "x");
     return((T @params) =>
     {
         return ParameterizedFunction.this.evaluate(x, @params);
     });
 }
Exemplo n.º 13
0
        public override double?apply(double[] x)
        {
            ArgChecker.notNull(x, "x");
            int n = x.Length;

            ArgChecker.isTrue(n >= 2, "Need at least two points to calculate the population variance");
            return(_variance.apply(x) * (n - 1) / n);
        }
Exemplo n.º 14
0
 /// <summary>
 /// Returns the quotient of two matrices $C = \frac{A}{B} = AB^{-1}$, where
 /// $B^{-1}$ is the pseudo-inverse of $B$ i.e. $BB^{-1} = \mathbb{1}$. </summary>
 /// <param name="m1"> The numerator matrix, not null. This matrix must be a <seealso cref="DoubleMatrix"/>. </param>
 /// <param name="m2"> The denominator, not null. This matrix must be a <seealso cref="DoubleMatrix"/>. </param>
 /// <returns> The result </returns>
 public virtual Matrix divide(Matrix m1, Matrix m2)
 {
     ArgChecker.notNull(m1, "m1");
     ArgChecker.notNull(m2, "m2");
     ArgChecker.isTrue(m1 is DoubleMatrix, "Can only divide a 2D matrix");
     ArgChecker.isTrue(m2 is DoubleMatrix, "Can only perform division with a 2D matrix");
     return(multiply(m1, getInverse(m2)));
 }
        /// <summary>
        /// Interpolate.
        /// </summary>
        /// <param name="xValues">  the values </param>
        /// <param name="yValues">  the values </param>
        /// <param name="xMatrix">  the matrix </param>
        /// <returns> Values of the underlying cubic spline function at the values of x </returns>
//JAVA TO C# CONVERTER WARNING: 'final' parameters are not available in .NET:
//ORIGINAL LINE: public com.opengamma.strata.collect.array.DoubleMatrix interpolate(final double[] xValues, final double[] yValues, final double[][] xMatrix)
        public virtual DoubleMatrix interpolate(double[] xValues, double[] yValues, double[][] xMatrix)
        {
            ArgChecker.notNull(xMatrix, "xMatrix");

            DoubleMatrix matrix = DoubleMatrix.copyOf(xMatrix);

            return(DoubleMatrix.ofArrayObjects(xMatrix.Length, xMatrix[0].Length, i => interpolate(xValues, yValues, matrix.rowArray(i))));
        }
 /// <summary>
 /// Creates an instance.
 /// </summary>
 /// <param name="base">  the base interpolator </param>
 /// <param name="extrapolatorLeft">  the extrapolator for x-values on the left </param>
 /// <param name="extrapolatorRight">  the extrapolator for x-values on the right </param>
 protected internal AbstractBoundCurveInterpolator(AbstractBoundCurveInterpolator @base, BoundCurveExtrapolator extrapolatorLeft, BoundCurveExtrapolator extrapolatorRight)
 {
     this.extrapolatorLeft  = ArgChecker.notNull(extrapolatorLeft, "extrapolatorLeft");
     this.extrapolatorRight = ArgChecker.notNull(extrapolatorRight, "extrapolatorRight");
     this.firstXValue       = @base.firstXValue;
     this.lastXValue        = @base.lastXValue;
     this.lastYValue        = @base.lastYValue;
 }
 /// <summary>
 /// Uses the parameters to create a function.
 /// </summary>
 /// <param name="params">  the parameters for which the function is to be evaluated, not null </param>
 /// <returns> a function that can be evaluated at different <i>x</i> with the input parameters </returns>
 public virtual System.Func <S, U> asFunctionOfArguments(T @params)
 {
     ArgChecker.notNull(@params, "params");
     return((S x) =>
     {
         return ParameterizedFunction.this.evaluate(x, @params);
     });
 }
 protected internal virtual void checkInputs(System.Func <double, double> f, double xLower, double xUpper)
 {
     ArgChecker.notNull(f, "function");
     if (DoubleMath.fuzzyEquals(xLower, xUpper, ZERO))
     {
         throw new System.ArgumentException("Lower and upper values were not distinct");
     }
 }
 /// <summary>
 /// Tests that the inputs to the root-finder are not null, and that a root is bracketed by the bounding values.
 /// </summary>
 /// <param name="function"> The function, not null </param>
 /// <param name="x1"> The first bound, not null </param>
 /// <param name="x2"> The second bound, not null, must be greater than x1 </param>
 /// <exception cref="IllegalArgumentException"> if x1 and x2 do not bracket a root </exception>
 protected internal virtual void checkInputs(DoubleFunction1D function, double?x1, double?x2)
 {
     ArgChecker.notNull(function, "function");
     ArgChecker.notNull(x1, "x1");
     ArgChecker.notNull(x2, "x2");
     ArgChecker.isTrue(x1 <= x2, "x1 must be less or equal to  x2");
     ArgChecker.isTrue(function.applyAsDouble(x1) * function.applyAsDouble(x2) <= 0, "x1 and x2 do not bracket a root");
 }
 /// <summary>
 /// Constructor. </summary>
 /// <param name="ch"> The result of the Cholesky decomposition. </param>
 public CholeskyDecompositionCommonsResult(CholeskyDecomposition ch)
 {
     ArgChecker.notNull(ch, "Cholesky decomposition");
     _determinant = ch.Determinant;
     _l           = CommonsMathWrapper.unwrap(ch.L);
     _lt          = CommonsMathWrapper.unwrap(ch.LT);
     _solver      = ch.Solver;
 }
Exemplo n.º 21
0
 /// <summary>
 /// Creates an instance.
 /// </summary>
 /// <param name="n"> The number of sample points to be used in the integration, not negative or zero </param>
 /// <param name="generator"> The generator of weights and abscissas </param>
 public GaussianQuadratureIntegrator1D(int n, QuadratureWeightAndAbscissaFunction generator)
 {
     ArgChecker.isTrue(n > 0, "number of intervals must be > 0");
     ArgChecker.notNull(generator, "generating function");
     this.size       = n;
     this.generator  = generator;
     this.quadrature = generator.generate(size);
 }
Exemplo n.º 22
0
 /// <summary>
 /// {@inheritDoc}
 /// </summary>
 public virtual double?integrate(System.Func <double, double> function, double?lower, double?upper)
 {
     ArgChecker.notNull(function, "function");
     ArgChecker.notNull(lower, "lower");
     ArgChecker.notNull(upper, "upper");
     System.Func <double, double> integral = getIntegralFunction(function, lower, upper);
     return(integrateFromPolyFunc(integral));
 }
Exemplo n.º 23
0
        public virtual LUDecompositionResult apply(DoubleMatrix x)
        {
            ArgChecker.notNull(x, "x");
            RealMatrix      temp = CommonsMathWrapper.wrap(x);
            LUDecomposition lu   = new LUDecomposition(temp);

            return(new LUDecompositionCommonsResult(lu));
        }
 /// <param name="abscissas"> An array containing the abscissas, not null </param>
 /// <param name="weights"> An array containing the weights, not null, must be the same length as the abscissa array </param>
 public GaussianQuadratureData(double[] abscissas, double[] weights)
 {
     ArgChecker.notNull(abscissas, "abscissas");
     ArgChecker.notNull(weights, "weights");
     ArgChecker.isTrue(abscissas.Length == weights.Length, "Abscissa and weight arrays must be the same length");
     _weights   = weights;
     _abscissas = abscissas;
 }
        public virtual SVDecompositionResult apply(DoubleMatrix x)
        {
            ArgChecker.notNull(x, "x");
            MatrixValidate.notNaNOrInfinite(x);
            RealMatrix commonsMatrix       = CommonsMathWrapper.wrap(x);
            SingularValueDecomposition svd = new SingularValueDecomposition(commonsMatrix);

            return(new SVDecompositionCommonsResult(svd));
        }
Exemplo n.º 26
0
        /// <summary>
        /// Creates an instance.
        /// </summary>
        /// <param name="cmsParams">  the CMS parameters </param>
        internal CmsMeasureCalculations(CmsSabrExtrapolationParams cmsParams)
        {
            SabrExtrapolationReplicationCmsPeriodPricer  periodPricer  = SabrExtrapolationReplicationCmsPeriodPricer.of(cmsParams.CutOffStrike, cmsParams.Mu);
            SabrExtrapolationReplicationCmsLegPricer     legPricer     = new SabrExtrapolationReplicationCmsLegPricer(periodPricer);
            SabrExtrapolationReplicationCmsProductPricer productPricer = new SabrExtrapolationReplicationCmsProductPricer(legPricer);
            SabrExtrapolationReplicationCmsTradePricer   tradePricer   = new SabrExtrapolationReplicationCmsTradePricer(productPricer);

            this.tradePricer = ArgChecker.notNull(tradePricer, "tradePricer");
        }
        /// <summary>
        /// Interpolate.
        /// </summary>
        /// <param name="xValues"> X values of data </param>
        /// <param name="yValues"> Y values of data </param>
        /// <param name="xKeys">  the keys </param>
        /// <returns> Values of the underlying cubic spline function at the values of x </returns>
//JAVA TO C# CONVERTER WARNING: 'final' parameters are not available in .NET:
//ORIGINAL LINE: public com.opengamma.strata.collect.array.DoubleArray interpolate(final double[] xValues, final double[] yValues, final double[] xKeys)
        public virtual DoubleArray interpolate(double[] xValues, double[] yValues, double[] xKeys)
        {
            ArgChecker.notNull(xKeys, "xKeys");

//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final int keyLength = xKeys.length;
            int keyLength = xKeys.Length;

            for (int i = 0; i < keyLength; ++i)
            {
                ArgChecker.isFalse(double.IsNaN(xKeys[i]), "xKeys containing NaN");
                ArgChecker.isFalse(double.IsInfinity(xKeys[i]), "xKeys containing Infinity");
            }

//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final PiecewisePolynomialResult result = this.interpolate(xValues, yValues);
            PiecewisePolynomialResult result = this.interpolate(xValues, yValues);
//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final com.opengamma.strata.collect.array.DoubleArray knots = result.getKnots();
            DoubleArray knots = result.Knots;
//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final int nKnots = knots.size();
            int nKnots = knots.size();
//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final com.opengamma.strata.collect.array.DoubleMatrix coefMatrix = result.getCoefMatrix();
            DoubleMatrix coefMatrix = result.CoefMatrix;

            double[] res = new double[keyLength];

            for (int j = 0; j < keyLength; ++j)
            {
                int indicator = 0;
                if (xKeys[j] < knots.get(1))
                {
                    indicator = 0;
                }
                else
                {
                    for (int i = 1; i < nKnots - 1; ++i)
                    {
                        if (knots.get(i) <= xKeys[j])
                        {
                            indicator = i;
                        }
                    }
                }
//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final com.opengamma.strata.collect.array.DoubleArray coefs = coefMatrix.row(indicator);
                DoubleArray coefs = coefMatrix.row(indicator);
                res[j] = getValue(coefs, xKeys[j], knots.get(indicator));
                ArgChecker.isFalse(double.IsInfinity(res[j]), "Too large input");
                ArgChecker.isFalse(double.IsNaN(res[j]), "Too large input");
            }

            return(DoubleArray.copyOf(res));
        }
Exemplo n.º 28
0
        //-------------------------------------------------------------------------
        public virtual System.Func <DoubleArray, DoubleMatrix> differentiate(System.Func <DoubleArray, DoubleArray> function, System.Func <DoubleArray, bool> domain)
        {
            ArgChecker.notNull(function, "function");
            ArgChecker.notNull(domain, "domain");
            double[] wFwd  = new double[] { -3.0, 4.0, -1.0 };
            double[] wCent = new double[] { -1.0, 0.0, 1.0 };
            double[] wBack = new double[] { 1.0, -4.0, 3.0 };

            return(new FuncAnonymousInnerClass4(this, function, domain, wFwd, wCent, wBack));
        }
        /// <summary>
        /// Interpolate.
        /// </summary>
        /// <param name="xValues">  the values </param>
        /// <param name="yValuesMatrix">  the matrix </param>
        /// <param name="x">  the s </param>
        /// <returns> Values of the underlying cubic spline functions interpolating {yValuesMatrix.RowVectors} at the values of x </returns>
//JAVA TO C# CONVERTER WARNING: 'final' parameters are not available in .NET:
//ORIGINAL LINE: public com.opengamma.strata.collect.array.DoubleMatrix interpolate(final double[] xValues, final double[][] yValuesMatrix, final double[] x)
        public virtual DoubleMatrix interpolate(double[] xValues, double[][] yValuesMatrix, double[] x)
        {
            ArgChecker.notNull(x, "x");

//JAVA TO C# CONVERTER WARNING: The original Java variable was marked 'final':
//ORIGINAL LINE: final com.opengamma.strata.collect.array.DoubleMatrix matrix = com.opengamma.strata.collect.array.DoubleMatrix.copyOf(yValuesMatrix);
            DoubleMatrix matrix = DoubleMatrix.copyOf(yValuesMatrix);

            return(DoubleMatrix.ofArrayObjects(yValuesMatrix.Length, x.Length, i => interpolate(xValues, matrix.rowArray(i), x)));
        }
Exemplo n.º 30
0
 public override double?apply(double?x)
 {
     ArgChecker.notNull(x, "x");
     ArgChecker.notNegative(x, "x");
     if (DoubleMath.fuzzyEquals(x, 0.5, 1e-14))
     {
         return(0.5);
     }
     return(_dist.getInverseCDF(x.Value));
 }