Exemplo n.º 1
0
 private void CreateLinesFromPointCloud(VectorImage image, VectorCloud2D cloud)
 {
     for (int i = 0; i < cloud.Count - 1; i++)
     {
         image.Add(new Line2D(cloud[i], cloud[i + 1]));
     }
 }
Exemplo n.º 2
0
        public static void PointInTriangleTest(VectorImage image)
        {
            Triangle2D t = new Triangle2D(new Vector2D(25, 150), new Vector2D(200, 200), new Vector2D(60, 80));

            image.Add(t);
            VectorCloud2D pc = PointCloudCreator.Create(new Rectangle2D(new Vector2D(10, 10), new Vector2D(300, 300)), 500);

            pc.Add(t.a);
            pc.Add(t.b);
            pc.Add(t.c);

            foreach (Vector2D p in pc)
            {
                p.SetData(new PrimitiveRenderData(t.IsInside(p) ? Color.DarkGreen : Color.DarkRed));
            }

            image.Add(pc);
        }
Exemplo n.º 3
0
 private static void MakeShapesFromSectors(VectorImage image, Dictionary <int, List <Line2D> > sectors)
 {
     foreach (KeyValuePair <int, List <Line2D> > lines in sectors)
     {
         Shape2D shape = Shape2DFunctions.CreateShapesFromLines(lines.Value);
         PrimitiveRenderData.Get(shape).Text = "Sector: " + lines.Key;
         image.Add(shape);
     }
 }
Exemplo n.º 4
0
        private void ReadGeometry(WkbStreamReader wkbReader, VectorImage image)
        {
            int geometryType = wkbReader.ReadInt32();
            int dimensionRaw = geometryType / 1000;
            int geoType      = geometryType - (dimensionRaw * 1000);

            wkbReader.Dimension = 2;
            if (dimensionRaw == 1)
            {
                wkbReader.Dimension = 3;
            }
            if (dimensionRaw == 2)
            {
                wkbReader.Dimension = 3;
            }
            if (dimensionRaw == 3)
            {
                wkbReader.Dimension = 4;
            }

            int numPoints = -1;

            switch (geoType)
            {
            case 1:
                image.Add(wkbReader.ReadPoint());
                break;

            case 2:
                numPoints = wkbReader.ReadInt32();
                CreateLinesFromPointCloud(image, wkbReader.ReadPointCloud(numPoints));
                break;

            case 3:
                int numRings = wkbReader.ReadInt32();
                for (int i = 0; i < numRings; i++)
                {
                    numPoints = wkbReader.ReadInt32();
                    image.Add(new Shape2D(wkbReader.ReadPointCloud(numPoints)));
                }
                break;
            }

            /*geoType
             * Geometry                 00
             * Point                    01
             * LineString               02
             * Polygon                  03
             * MultiPoint               04
             * MultiLineString          05
             * MultiPolygon             06
             * GeometryCollection       07
             * CircularString           08
             * CompoundCurve            09
             * CurvePolygon             10
             * MultiCurve               11
             * MultiSurface             12
             * Curve                    13
             * Surface                  14
             * PolyhedralSurface        15
             * TIN                      16
             * Triangle                 17
             */
        }
Exemplo n.º 5
0
    /// <summary>
    /// Finds and classifies detections for all frames in a video.
    /// </summary>
    /// <param name="detect_path">Path to detect model file.</param>
    /// <param name="classify_path">Path to classify model file.</param>
    /// <param name="roi">Region of interest output from FindVideoRoi.</param>
    /// <param name="endpoints">Ruler endpoints output from FindVideoRoi.</param>
    /// <param name="detections">Detections for each frame.</param>
    /// <param name="scores">Cover and species scores for each detection.</param>
    static void DetectAndClassify(
        string detect_path,
        string classify_path,
        string vid_path,
        Rect roi,
        PointPair endpoints,
        out VectorVectorDetection detections,
        out VectorVectorClassification scores)
    {
        // Determined by experimentation with GPU having 8GB memory.
        const int kMaxImg = 32;

        // Initialize the outputs.
        detections = new VectorVectorDetection();
        scores     = new VectorVectorClassification();

        // Create and initialize the detector.
        Detector  detector = new Detector();
        ErrorCode status   = detector.Init(detect_path, 0.5);

        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to initialize detector!");
        }

        // Create and initialize the classifier.
        Classifier classifier = new Classifier();

        status = classifier.Init(classify_path, 0.5);
        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to initialize classifier!");
        }

        // Initialize the video reader.
        VideoReader reader = new VideoReader();

        status = reader.Init(vid_path);
        if (status != ErrorCode.kSuccess)
        {
            throw new Exception("Failed to open video!");
        }

        // Iterate through frames.
        bool vid_end = false;

        while (true)
        {
            // Find detections.
            VectorVectorDetection dets = new VectorVectorDetection();
            VectorImage           imgs = new VectorImage();
            for (int i = 0; i < kMaxImg; ++i)
            {
                Image img = new Image();
                status = reader.GetFrame(img);
                if (status != ErrorCode.kSuccess)
                {
                    vid_end = true;
                    break;
                }
                img = openem.Rectify(img, endpoints);
                img = openem.Crop(img, roi);
                imgs.Add(img);
                status = detector.AddImage(img);
                if (status != ErrorCode.kSuccess)
                {
                    throw new Exception("Failed to add frame to detector!");
                }
            }
            status = detector.Process(dets);
            if (status != ErrorCode.kSuccess)
            {
                throw new Exception("Failed to process detector!");
            }
            for (int i = 0; i < dets.Count; ++i)
            {
            }
            detections.AddRange(dets);
            for (int i = 0; i < detections.Count; ++i)
            {
            }

            // Classify detections.
            for (int i = 0; i < dets.Count; ++i)
            {
                VectorClassification score_batch = new VectorClassification();
                for (int j = 0; j < dets[i].Count; ++j)
                {
                    Image det_img = openem.GetDetImage(imgs[i], dets[i][j].location);
                    status = classifier.AddImage(det_img);
                    if (status != ErrorCode.kSuccess)
                    {
                        throw new Exception("Failed to add frame to classifier!");
                    }
                }
                status = classifier.Process(score_batch);
                if (status != ErrorCode.kSuccess)
                {
                    throw new Exception("Failed to process classifier!");
                }
                scores.Add(score_batch);
            }
            if (vid_end)
            {
                break;
            }
        }
    }
Exemplo n.º 6
0
    /// <summary>
    /// Main program.
    /// </summary>
    static int Main(string[] args)
    {
        // Check input arguments.
        if (args.Length < 2)
        {
            Console.WriteLine("Expected at least two arguments:");
            Console.WriteLine("  Path to protobuf file containing model");
            Console.WriteLine("  Paths to one or more image files");
            return(-1);
        }

        // Create and initialize detector.
        Detector  detector = new Detector();
        ErrorCode status   = detector.Init(args[0]);

        if (status != ErrorCode.kSuccess)
        {
            Console.WriteLine("Failed to initialize detector!");
            return(-1);
        }

        // Load in images.
        VectorImage imgs = new VectorImage();

        for (int i = 1; i < args.Length; i++)
        {
            Image img = new Image();
            status = img.FromFile(args[i]);
            if (status != ErrorCode.kSuccess)
            {
                Console.WriteLine("Failed to load image {0}!", args[i]);
                return(-1);
            }
            imgs.Add(img);
        }

        // Add images to processing queue.
        foreach (var img in imgs)
        {
            status = detector.AddImage(img);
            if (status != ErrorCode.kSuccess)
            {
                Console.WriteLine("Failed to add image for processing!");
                return(-1);
            }
        }

        // Process the loaded images.
        VectorVectorDetection detections = new VectorVectorDetection();

        status = detector.Process(detections);
        if (status != ErrorCode.kSuccess)
        {
            Console.WriteLine("Failed to process images!");
            return(-1);
        }

        // Display the detections on the image.
        for (int i = 0; i < detections.Count; ++i)
        {
            foreach (var det in detections[i])
            {
                imgs[i].DrawRect(det.location);
            }
            imgs[i].Show();
        }

        return(0);
    }
Exemplo n.º 7
0
    /// <summary>
    /// Main program.
    /// </summary>
    static int Main(string[] args)
    {
        // Check input arguments.
        if (args.Length < 2)
        {
            Console.WriteLine("Expected at least two arguments:");
            Console.WriteLine("  Path to protobuf file containing model");
            Console.WriteLine("  Paths to one or more image files");
            return(-1);
        }

        // Create and initialize the mask finder.
        RulerMaskFinder mask_finder = new RulerMaskFinder();
        ErrorCode       status      = mask_finder.Init(args[0]);

        if (status != ErrorCode.kSuccess)
        {
            Console.WriteLine("Failed to initialize ruler mask finder!");
            return(-1);
        }

        // Load in images.
        VectorImage imgs = new VectorImage();

        for (int i = 1; i < args.Length; i++)
        {
            Image img = new Image();
            status = img.FromFile(args[i]);
            if (status != ErrorCode.kSuccess)
            {
                Console.WriteLine("Failed to load image {0}!", args[i]);
                return(-1);
            }
            imgs.Add(img);
        }

        // Add images to processing queue.
        foreach (var img in imgs)
        {
            status = mask_finder.AddImage(img);
            if (status != ErrorCode.kSuccess)
            {
                Console.WriteLine("Failed to add image for processing!");
                return(-1);
            }
        }

        // Process the loaded images.
        VectorImage masks = new VectorImage();

        status = mask_finder.Process(masks);
        if (status != ErrorCode.kSuccess)
        {
            Console.WriteLine("Failed to process images!");
            return(-1);
        }

        for (int i = 0; i < masks.Count; ++i)
        {
            // Resize the masks back into the same size as the images.
            masks[i].Resize(imgs[i].Width(), imgs[i].Height());

            // Check if the ruler is present.
            bool present = openem.RulerPresent(masks[i]);
            if (!present)
            {
                Console.WriteLine("Could not find ruler in image!  Skipping...");
                continue;
            }

            // Find orientation and region of interest based on the mask.
            PointPair endpoints = new PointPair();
            endpoints = openem.RulerEndpoints(masks[i]);
            Image r_mask = openem.Rectify(masks[i], endpoints);
            Rect  roi    = openem.FindRoi(r_mask);

            // Rectify, crop, and display the image.
            Image r_img = openem.Rectify(imgs[i], endpoints);
            Image c_img = openem.Crop(r_img, roi);
            c_img.Show();
        }

        return(0);
    }
Exemplo n.º 8
0
    /// <summary>
    /// Main program.
    /// </summary>
    static int Main(string[] args)
    {
        // Check input arguments.
        if (args.Length < 2)
        {
            Console.WriteLine("Expected at least two arguments:");
            Console.WriteLine("  Path to protobuf file containing model");
            Console.WriteLine("  Paths to one or more image files");
            return(-1);
        }

        // Create and initialize classifier.
        Classifier classifier = new Classifier();
        ErrorCode  status     = classifier.Init(args[0]);

        if (status != ErrorCode.kSuccess)
        {
            Console.WriteLine("Failed to initialize classifier!");
            return(-1);
        }

        // Load in images.
        VectorImage imgs     = new VectorImage();
        PairIntInt  img_size = classifier.ImageSize();

        for (int i = 1; i < args.Length; i++)
        {
            Image img = new Image();
            status = img.FromFile(args[i]);
            if (status != ErrorCode.kSuccess)
            {
                Console.WriteLine("Failed to load image {0}!", args[i]);
                return(-1);
            }
            img.Resize(img_size.first, img_size.second);
            imgs.Add(img);
        }

        // Add images to processing queue.
        foreach (var img in imgs)
        {
            status = classifier.AddImage(img);
            if (status != ErrorCode.kSuccess)
            {
                Console.WriteLine("Failed to add image for processing!");
                return(-1);
            }
        }

        // Process the loaded images.
        VectorClassification scores = new VectorClassification();

        status = classifier.Process(scores);
        if (status != ErrorCode.kSuccess)
        {
            Console.WriteLine("Failed to process images!");
            return(-1);
        }

        // Display the images and print scores to console.
        for (int i = 0; i < scores.Count; ++i)
        {
            Console.WriteLine("*******************************************");
            Console.WriteLine("Fish cover scores:");
            Console.WriteLine("No fish:        {0}", scores[i].cover[0]);
            Console.WriteLine("Hand over fish: {0}", scores[i].cover[1]);
            Console.WriteLine("Fish clear:     {0}", scores[i].cover[2]);
            Console.WriteLine("*******************************************");
            Console.WriteLine("Fish species scores:");
            Console.WriteLine("Fourspot:   {0}", scores[i].species[0]);
            Console.WriteLine("Grey sole:  {0}", scores[i].species[1]);
            Console.WriteLine("Other:      {0}", scores[i].species[2]);
            Console.WriteLine("Plaice:     {0}", scores[i].species[3]);
            Console.WriteLine("Summer:     {0}", scores[i].species[4]);
            Console.WriteLine("Windowpane: {0}", scores[i].species[5]);
            Console.WriteLine("Winter:     {0}", scores[i].species[6]);
            Console.WriteLine("");
            imgs[i].Show();
        }
        return(0);
    }