Exemplo n.º 1
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (BingoMissionGroupId != 0)
            {
                hash ^= BingoMissionGroupId.GetHashCode();
            }
            if (U2 != 0)
            {
                hash ^= U2.GetHashCode();
            }
            if (ScheduleId.Length != 0)
            {
                hash ^= ScheduleId.GetHashCode();
            }
            if (BingoMissionCardId != 0)
            {
                hash ^= BingoMissionCardId.GetHashCode();
            }
            if (BingoMissionRewardId != 0)
            {
                hash ^= BingoMissionRewardId.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (BannerId != 0)
            {
                hash ^= BannerId.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (PrevBingoMissionGroupId != 0)
            {
                hash ^= PrevBingoMissionGroupId.GetHashCode();
            }
            if (BingoMissionGroupPermissionId != 0)
            {
                hash ^= BingoMissionGroupPermissionId.GetHashCode();
            }
            if (U11 != 0)
            {
                hash ^= U11.GetHashCode();
            }
            if (U12 != 0)
            {
                hash ^= U12.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 2
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (TrainerBaseId != 0UL)
            {
                hash ^= TrainerBaseId.GetHashCode();
            }
            if (ActorId.Length != 0)
            {
                hash ^= ActorId.GetHashCode();
            }
            if (TrainerNameId.Length != 0)
            {
                hash ^= TrainerNameId.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (U5.Length != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (Gender != 0)
            {
                hash ^= Gender.GetHashCode();
            }
            if (PokeballId.Length != 0)
            {
                hash ^= PokeballId.GetHashCode();
            }
            if (IsGeneric != 0)
            {
                hash ^= IsGeneric.GetHashCode();
            }
            if (BattleBgmId.Length != 0)
            {
                hash ^= BattleBgmId.GetHashCode();
            }
            if (ResultBgmId.Length != 0)
            {
                hash ^= ResultBgmId.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 3
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (TeamSkillConditionId != 0UL)
            {
                hash ^= TeamSkillConditionId.GetHashCode();
            }
            if (TeamSkillId != 0)
            {
                hash ^= TeamSkillId.GetHashCode();
            }
            if (TeamSkillMinPairsReq != 0)
            {
                hash ^= TeamSkillMinPairsReq.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (U9 != 0)
            {
                hash ^= U9.GetHashCode();
            }
            if (U10 != 0)
            {
                hash ^= U10.GetHashCode();
            }
            if (U11 != 0)
            {
                hash ^= U11.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 4
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (QuestGroupId != 0L)
            {
                hash ^= QuestGroupId.GetHashCode();
            }
            if (U2.Length != 0)
            {
                hash ^= U2.GetHashCode();
            }
            if (BannerId != 0)
            {
                hash ^= BannerId.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (ScheduleId.Length != 0)
            {
                hash ^= ScheduleId.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7.Length != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (BgmId.Length != 0)
            {
                hash ^= BgmId.GetHashCode();
            }
            if (U10 != 0)
            {
                hash ^= U10.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 5
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (MissionGroupId != 0)
            {
                hash ^= MissionGroupId.GetHashCode();
            }
            if (ScheduleId.Length != 0)
            {
                hash ^= ScheduleId.GetHashCode();
            }
            if (U3 != 0)
            {
                hash ^= U3.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (ItemSetId != 0L)
            {
                hash ^= ItemSetId.GetHashCode();
            }
            if (BannerId != 0)
            {
                hash ^= BannerId.GetHashCode();
            }
            if (U9 != 0)
            {
                hash ^= U9.GetHashCode();
            }
            if (U10 != 0)
            {
                hash ^= U10.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 6
0
        public void performActions()
        {
            double dblValue = 0;
            int    intValue = 0;

            int binary;

            int[]    aEnableTimers      = new int[2];
            int[]    aEnableCounters    = new int[2];
            int[]    aTimerModes        = new int[2];
            double[] adblTimerValues    = new double[2];
            int[]    aReadTimers        = new int[2];
            int[]    aUpdateResetTimers = new int[2];
            int[]    aReadCounters      = new int[2];
            int[]    aResetCounters     = new int[2];
            double[] adblCounterValues  = { 0, 0 };

            try
            {
                //Open the first found LabJack U6.
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //Take a single-ended measurement from AIN3.
                binary = 0;
                LJUD.eAIN(u6.ljhandle, 3, 199, ref dblValue, -1, -1, -1, binary);
                Console.Out.WriteLine("AIN3 = {0:0.###}\n", dblValue);

                //Set DAC0 to 3.0 volts.
                dblValue = 3.0;
                binary   = 0;
                LJUD.eDAC(u6.ljhandle, 0, dblValue, binary, 0, 0);
                Console.Out.WriteLine("DAC0 set to {0:0.###} volts\n", dblValue);

                //Read state of FIO0.
                LJUD.eDI(u6.ljhandle, 0, ref intValue);
                Console.Out.WriteLine("FIO0 = {0:0.#}\n", intValue);

                //Set the state of FIO3.
                intValue = 1;
                LJUD.eDO(u6.ljhandle, 3, intValue);
                Console.Out.WriteLine("FIO3 set to = {0:0.#}\n\n", intValue);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }
            Console.ReadLine();             // Pause for user
        }
Exemplo n.º 7
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (ScoutId.Length != 0)
            {
                hash ^= ScoutId.GetHashCode();
            }
            if (BannerIdString.Length != 0)
            {
                hash ^= BannerIdString.GetHashCode();
            }
            if (Type != 0)
            {
                hash ^= Type.GetHashCode();
            }
            if (ScheduleId.Length != 0)
            {
                hash ^= ScheduleId.GetHashCode();
            }
            if (U5 != 0UL)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (BannerId != 0)
            {
                hash ^= BannerId.GetHashCode();
            }
            if (U9.Length != 0)
            {
                hash ^= U9.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 8
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (PassiveId != 0)
            {
                hash ^= PassiveId.GetHashCode();
            }
            if (U2 != 0)
            {
                hash ^= U2.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (U9 != 0)
            {
                hash ^= U9.GetHashCode();
            }
            if (U10 != 0)
            {
                hash ^= U10.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 9
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (TeamSkillEffectId != 0UL)
            {
                hash ^= TeamSkillEffectId.GetHashCode();
            }
            if (TeamSkillId != 0)
            {
                hash ^= TeamSkillId.GetHashCode();
            }
            if (U3 != 0)
            {
                hash ^= U3.GetHashCode();
            }
            if (TeamSkillGrowthId != 0)
            {
                hash ^= TeamSkillGrowthId.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 10
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (ItemId != 0L)
            {
                hash ^= ItemId.GetHashCode();
            }
            if (TextId != 0)
            {
                hash ^= TextId.GetHashCode();
            }
            if (ImageId.Length != 0)
            {
                hash ^= ImageId.GetHashCode();
            }
            if (Rarity != 0)
            {
                hash ^= Rarity.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (EggLotGroupId != 0)
            {
                hash ^= EggLotGroupId.GetHashCode();
            }
            if (Time != 0)
            {
                hash ^= Time.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 11
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (Level != 0)
            {
                hash ^= Level.GetHashCode();
            }
            if (U2 != 0)
            {
                hash ^= U2.GetHashCode();
            }
            if (U3 != 0)
            {
                hash ^= U3.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 12
0
        public void performActions()
        {
            long i = 0, k = 0;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0, dblCommBacklog = 0, dblUDBacklog = 0;
            double       scanRate = 1000;        //scan rate = sample rate / #channels
            int          delayms  = 1000;
            double       numScans = 2000;        //Max number of scans per read.  2x the expected # of scans (2*scanRate*delayms/1000).
            double       numScansRequested;

            double[] adblData     = new double[4000];          //Max buffer size (#channels*numScansRequested)

            // Dummy variables to satisfy certain method signatures
            double dummyDouble = 0;

            double[] dummyDoubleArray = { 0 };
            int      dummyInt         = 0;

            // Open U6
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //Configure the stream:

                //Configure the resolution of the analog inputs (pass a non-zero value for quick sampling).
                //See section 2.6 / 3.1 for more information.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 0, 0, 0);

                //Configure the analog input range on channel 0 for bipolar +-10 volts.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, 0, (double)LJUD.RANGES.BIP10V, 0, 0);

                //Set the scan rate.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_SCAN_FREQUENCY, scanRate, 0, 0);

                //Give the driver a 5 second buffer (scanRate * 2 channels * 5 seconds).
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_BUFFER_SIZE, scanRate * 2 * 5, 0, 0);

                //Configure reads to retrieve whatever data is available without waiting (wait mode LJUD.STREAMWAITMODES.NONE).
                //See comments below to change this program to use LJUD.STREAMWAITMODES.SLEEP mode.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_WAIT_MODE, (double)LJUD.STREAMWAITMODES.NONE, 0, 0);

                //Define the scan list as AIN0 then AIN1.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.CLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 0, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 1, 0, 0, 0);

                //Execute the list of requests.
                LJUD.GoOne(u6.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            // Get results until there is no more data available for error checking
            bool isFinished = false;

            while (!isFinished)
            {
                try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dummyDouble, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            //Start the stream.
            LJUD.eGet(u6.ljhandle, LJUD.IO.START_STREAM, 0, ref dblValue, 0);

            //The actual scan rate is dependent on how the desired scan rate divides into
            //the LabJack clock.  The actual scan rate is returned in the value parameter
            //from the start stream command.
            Console.Out.WriteLine("Actual Scan Rate = {0:0.###}\n", dblValue);
            Console.Out.WriteLine("Actual Sample Rate = {0:0.###}\n", 2 * dblValue);

            //Read data
            while (Win32Interop._kbhit() == 0)                  //Loop will run until any key is hit
            {
                //Since we are using wait mode LJUD.STREAMWAITMODES.NONE, we will wait a little, then
                //read however much data is available.  Thus this delay will control how
                //fast the program loops and how much data is read each loop.  An
                //alternative common method is to use wait mode LJUD.STREAMWAITMODES.SLEEP where the
                //stream read waits for a certain number of scans.  In such a case
                //you would not have a delay here, since the stream read will actually
                //control how fast the program loops.
                //
                //To change this program to use sleep mode,
                //	-change numScans to the actual number of scans desired per read,
                //	-change wait mode addrequest value to LJUD.STREAMWAITMODES.SLEEP,
                //	-comment out the following Thread.Sleep command.

                Thread.Sleep(delayms);                  //Remove if using LJUD.STREAMWAITMODES.SLEEP.

                //init array so we can easily tell if it has changed
                for (k = 0; k < numScans * 2; k++)
                {
                    adblData[k] = 9999.0;
                }

                //Read the data.  We will request twice the number we expect, to
                //make sure we get everything that is available.
                //Note that the array we pass must be sized to hold enough SAMPLES, and
                //the Value we pass specifies the number of SCANS to read.
                numScansRequested = numScans;
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_STREAM_DATA, LJUD.CHANNEL.ALL_CHANNELS, ref numScansRequested, adblData);

                //The displays the number of scans that were actually read.
                Console.Out.WriteLine("\nIteration # {0:0}\n", i);
                Console.Out.WriteLine("Number scans read = {0:0}\n", numScansRequested);

                //Display just the first scan.
                Console.Out.WriteLine("First scan = {0:0.###}, {1:0.###}\n", adblData[0], adblData[1]);

                //Retrieve the current Comm backlog.  The UD driver retrieves stream data from
                //the U6 in the background, but if the computer is too slow for some reason
                //the driver might not be able to read the data as fast as the U6 is
                //acquiring it, and thus there will be data left over in the U6 buffer.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.STREAM_BACKLOG_COMM, ref dblCommBacklog, 0);
                Console.Out.WriteLine("Comm Backlog = {0:0.###}\n", dblCommBacklog);

                //Retrieve the current UD driver backlog.  If this is growing, then the application
                //software is not pulling data from the UD driver fast enough.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.STREAM_BACKLOG_UD, ref dblUDBacklog, 0);
                Console.Out.WriteLine("UD Backlog = {0:0.###}\n", dblUDBacklog);

                i++;
            }


            //Stop the stream
            LJUD.eGet(u6.ljhandle, LJUD.IO.STOP_STREAM, 0, ref dummyDouble, dummyDoubleArray);


            Console.Out.WriteLine("\nDone");
            Console.ReadLine();             // Pause for user
        }
Exemplo n.º 13
0
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;
            double       valueAIN = 0;        //Analog Voltage Value

            LJUD.CHANNEL tempChannel   = 0;   //Channel which the TC/LJTIA is on (AIN0).
            double       ainResolution = 0;   //Configure resolution of the analog inputs (pass a non-zero value for quick sampling).
            //See section 2.6 / 3.1 for more information.
            double dblInternal = 0;
            double range       = (double)LJUD.RANGES.BIPP1V;

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            double tcVolts = 0, cjTempK = 0, pTCTempK = 0;

            LJUD.THERMOCOUPLETYPE tcType = LJUD.THERMOCOUPLETYPE.K;
            //Set the temperature sensor to a k type thermocouple
            //Possible Thermocouple types are:
            //B = 6001
            //E = 6002
            //J = 6003
            //K = 6004
            //N = 6005
            //R = 6006
            //S = 6007
            //T = 6008

            //Open the first found LabJack U6 via USB.
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //Configure the desired resolution. See section 2.6 / 3.1 of the User's Guide
                LJUD.eGet(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, ref ainResolution, 0);

                // Set the range on the ananlog input channel to +/- 0.1 volts (x100 gain)
                LJUD.eGet(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, channel, ref range, 0);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            Console.Out.WriteLine("Press any key to quit\n");

            //Constantly acquire temperature readings until a key is pressed
            bool keyPressed = false;

            while (!keyPressed)
            {
                ioType   = 0;
                channel  = 0;
                tcVolts  = 0;
                cjTempK  = 0;
                pTCTempK = 0;

                try
                {
                    //Add analog input requests.
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, (LJUD.CHANNEL)tempChannel, 0, 0, 0);

                    //Add request for internal temperature reading -- Internal temp sensor uses
                    //analog input channel 14.
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 14, 0, 0, 0);

                    //Execute all requests on the labjack u6.ljhandle.
                    LJUD.GoOne(u6.ljhandle);

                    //Get all the results.  The first result should be the voltage reading of the
                    //temperature channel.
                    LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    showErrorMessage(e);
                }

                //Get the rest of the results.  There should only be one more on the request
                //queue.
                bool finished = false;
                while (!finished)
                {
                    if (ioType == LJUD.IO.GET_AIN)
                    {
                        if (channel == tempChannel)
                        {
                            tcVolts = dblValue;
                        }

                        if (channel == (LJUD.CHANNEL) 14)
                        {
                            dblInternal = dblValue;
                        }
                    }

                    try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        if (e.LJUDError == LJUD.LJUDERROR.NO_DATA_AVAILABLE)
                        {
                            finished = true;
                        }
                        else if (e.LJUDError > LJUD.LJUDERROR.MIN_GROUP_ERROR)
                        {
                            finished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }

                //The cold junction is the screw-terminal block where the thermocouple
                //is connected.  As discussed in the U6 User's Guide, add 2.5 degrees C
                //to the internal temp sensor reading.  If using the CB37 rather than
                //the built-in screw terminals, just add 1.0 degrees C.
                cjTempK = dblInternal + 2.5;

                //Display Voltage Reading
                Console.Out.WriteLine("Analog {0:0}:           {1:0.######}\n", (int)tempChannel, valueAIN);

                //Display the internal temperature sensor reading.  This example uses
                //that value for cold junction compensation.
                Console.Out.WriteLine("U6 internal sensor:  {0:0.0} deg K\n", (double)dblInternal);

                //Convert TC voltage to temperature.
                LJUD.TCVoltsToTemp(tcType, tcVolts, cjTempK, ref pTCTempK);

                //Display Temperature
                Console.Out.WriteLine("Thermocouple sensor:  {0:0.0} deg K\n\n", pTCTempK);

                Thread.Sleep(1500);                      // Short pause

                keyPressed = Win32Interop._kbhit() != 0; // If a key was hit break out of the loop
            }
        }
Exemplo n.º 14
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (EvolutionId != 0UL)
            {
                hash ^= EvolutionId.GetHashCode();
            }
            if (TrainerId != 0UL)
            {
                hash ^= TrainerId.GetHashCode();
            }
            if (MonsterIdCurrent != 0UL)
            {
                hash ^= MonsterIdCurrent.GetHashCode();
            }
            if (MonsterIdNext != 0UL)
            {
                hash ^= MonsterIdNext.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (U9 != 0)
            {
                hash ^= U9.GetHashCode();
            }
            if (U10 != 0)
            {
                hash ^= U10.GetHashCode();
            }
            if (U11 != 0)
            {
                hash ^= U11.GetHashCode();
            }
            if (U12 != 0)
            {
                hash ^= U12.GetHashCode();
            }
            if (U13 != 0)
            {
                hash ^= U13.GetHashCode();
            }
            if (U14 != 0)
            {
                hash ^= U14.GetHashCode();
            }
            if (U15 != 0)
            {
                hash ^= U15.GetHashCode();
            }
            if (U16 != 0)
            {
                hash ^= U16.GetHashCode();
            }
            if (U17 != 0)
            {
                hash ^= U17.GetHashCode();
            }
            if (U18 != 0)
            {
                hash ^= U18.GetHashCode();
            }
            if (U19 != 0)
            {
                hash ^= U19.GetHashCode();
            }
            if (U20 != 0)
            {
                hash ^= U20.GetHashCode();
            }
            if (ScheduleId.Length != 0)
            {
                hash ^= ScheduleId.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 15
0
        public void performActions()
        {
            double dblValue = 0;

            //Open the first found LabJack U6.
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //Set the Data line to FIO0
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SHT_DATA_CHANNEL, 0, 0);

                //Set the Clock line to FIO1
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SHT_CLOCK_CHANNEL, 1, 0);

                //Set FIO2 to output-high to provide power to the EI-1050.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, (LJUD.CHANNEL) 2, 1, 0);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }
            ///*
            //Use this code if only a single EI-1050 is connected.
            //	Connections for one probe:
            //	Red (Power)         FIO2
            //	Black (Ground)      GND
            //	Green (Data)        FIO0
            //	White (Clock)       FIO1
            //	Brown (Enable)      FIO2
            try
            {
                //Now, an add/go/get block to get the temp & humidity at the same time.
                //Request a temperature reading from the EI-1050.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_TEMP, 0, 0, 0);

                //Request a humidity reading from the EI-1050.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_RH, 0, 0, 0);

                //Execute the requests.  Will take about 0.5 seconds with a USB high-high
                //or Ethernet connection, and about 1.5 seconds with a normal USB connection.
                LJUD.GoOne(u6.ljhandle);

                //Get the temperature reading.
                LJUD.GetResult(u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_TEMP, ref dblValue);
                Console.Out.WriteLine("Temp Probe A = {0:0.###} deg K\n", dblValue);
                Console.Out.WriteLine("Temp Probe A = {0:0.###} deg C\n", (dblValue - 273.15));
                Console.Out.WriteLine("Temp Probe A = {0:0.###} deg F\n", (((dblValue - 273.15) * 1.8) + 32));

                //Get the humidity reading.
                LJUD.GetResult(u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_RH, ref dblValue);
                Console.Out.WriteLine("RH Probe A = {0:0.###} percent\n\n", dblValue);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //End of single probe code.

            /*/
             *
             *
             * ///*
             * //Use this code if two EI-1050 probes are connected.
             * //	Connections for both probes:
             * //	Red (Power)         FIO2
             * //	Black (Ground)      GND
             * //	Green (Data)        FIO0
             * //	White (Clock)       FIO1
             * //
             * //	Probe A:
             * //	Brown (Enable)    FIO3
             * //
             * //	Probe B:
             * //	Brown (Enable)    DAC0
             *
             * try
             * {
             *
             *      //Set FIO3 to output-low to disable probe A.
             *      LJUD.ePut (u6.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, (LJUD.CHANNEL)3, 0, 0);
             *
             *      //Set DAC0 to 0 volts to disable probe B.
             *      LJUD.ePut (u6.ljhandle, LJUD.IO.PUT_DAC, 0, 0.0, 0);
             *
             *      //Set FIO3 to output-high to enable probe A.
             *      LJUD.ePut (u6.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, (LJUD.CHANNEL)3, 1, 0);
             *
             *      //Now, an add/go/get block to get the temp & humidity at the same time.
             *      //Request a temperature reading from the EI-1050.
             *      LJUD.AddRequest (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_TEMP, 0, 0, 0);
             *
             *      //Request a humidity reading from the EI-1050.
             *      LJUD.AddRequest (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_RH, 0, 0, 0);
             *
             *      //Execute the requests.  Will take about 0.5 seconds with a USB high-high
             *      //or Ethernet connection, and about 1.5 seconds with a normal USB connection.
             *      LJUD.GoOne (u6.ljhandle);
             *
             *      //Get the temperature reading.
             *      LJUD.GetResult (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_TEMP, ref dblValue);
             *      Console.Out.WriteLine("Temp Probe A = {0:0.###} deg K\n",dblValue);
             *      Console.Out.WriteLine("Temp Probe A = {0:0.###} deg C\n",(dblValue-273.15));
             *      Console.Out.WriteLine("Temp Probe A = {0:0.###} deg F\n",(((dblValue-273.15)*1.8)+32));
             *
             *      //Get the humidity reading.
             *      LJUD.GetResult (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_RH, ref dblValue);
             *      Console.Out.WriteLine("RH Probe A = {0:0.###} percent\n\n",dblValue);
             *
             *      //Set FIO3 to output-low to disable probe A.
             *      LJUD.ePut (u6.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, (LJUD.CHANNEL)3, 0, 0);
             *
             *      //Set DAC0 to 3.3 volts to enable probe B.
             *      LJUD.ePut (u6.ljhandle, LJUD.IO.PUT_DAC, 0, 3.3, 0);
             *
             *      //Since the DACs on the U6 are slower than the communication speed,
             *      //we put a delay here to make sure the DAC has time to rise to 3.3 volts
             *      //before communicating with the EI-1050.
             *      Thread.Sleep(30);  //Wait 30 ms.
             *
             *      //Now, an add/go/get block to get the temp & humidity at the same time.
             *      //Request a temperature reading from the EI-1050.
             *      LJUD.AddRequest (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_TEMP, 0, 0, 0);
             *
             *      //Request a humidity reading from the EI-1050.
             *      LJUD.AddRequest (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_RH, 0, 0, 0);
             *
             *      //Execute the requests.  Will take about 0.5 seconds with a USB high-high
             *      //or Ethernet connection, and about 1.5 seconds with a normal USB connection.
             *      LJUD.GoOne (u6.ljhandle);
             *
             *      //Get the temperature reading.
             *      LJUD.GetResult (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_TEMP, ref dblValue);
             *      Console.Out.WriteLine("Temp Probe B = {0:0.###} deg K\n",dblValue);
             *      Console.Out.WriteLine("Temp Probe B = {0:0.###} deg C\n",(dblValue-273.15));
             *      Console.Out.WriteLine("Temp Probe B = {0:0.###} deg F\n",(((dblValue-273.15)*1.8)+32));
             *
             *      //Get the humidity reading.
             *      LJUD.GetResult (u6.ljhandle, LJUD.IO.SHT_GET_READING, LJUD.CHANNEL.SHT_RH, ref dblValue);
             *      Console.Out.WriteLine("RH Probe B = {0:0.###} percent\n\n",dblValue);
             *
             *      //Set DAC0 to 0 volts to disable probe B.
             *      LJUD.ePut (u6.ljhandle, LJUD.IO.PUT_DAC, 0, 0.0, 0);
             *
             *      //If we were going to loop and talk to probe A next, we would
             *      //want a delay here to make sure the DAC falls to 0 volts
             *      //before enabling probe A.
             *      Thread.Sleep(30);  //Wait 30 ms.
             * }
             * catch (LabJackUDException e)
             * {
             *      showErrorMessage(e);
             * }
             *
             * //End of dual probe code.
             * //*/

            Console.ReadLine();             // Pause for user
        }
Exemplo n.º 16
0
        public void performActions()
        {
            LJUD.IO      ioType      = 0;
            LJUD.CHANNEL channel     = 0;
            double       dblValue    = 0;
            double       ValueDIPort = 0;

            double[] ValueAIN = new double[16];


            long time = 0, i = 0, j = 0;
            long numIterations = 100;
            int  numChannels   = 16;            //Number of AIN channels, 0-16.
            long resolution    = 0;             //Configure resolution of the analog inputs (pass a non-zero value for quick sampling).
            //See section 2.6 / 3.1 for more information.
            long settlingTime = 1;              //0=5us, 1=10us, 2=100us, 3=1ms, 4=10ms

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            try
            {
                //Open the first found LabJack.
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //Configure resolution. See section 2.6/3.1 of the User's Guide.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, resolution, 0);

                //Configure settling time
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_SETTLING_TIME, settlingTime, 0);

                //Set the timer/counter pin offset to 8, which will put the first
                //timer/counter on EIO0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_COUNTER_PIN_OFFSET, 8, 0, 0);

                //Use the default clock source.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_BASE, (double)LJUD.TIMERCLOCKS.MHZ48, 0, 0);

                //Enable 2 timers.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 2, 0, 0);

                //Configure Timer0 as 8-bit PWM.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_MODE, 0, (double)LJUD.TIMERMODE.PWM8, 0, 0);

                //Set the PWM duty cycle to 50%.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 32768, 0, 0);

                //Configure Timer1 as 8-bit PWM.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_MODE, 1, (double)LJUD.TIMERMODE.PWM8, 0, 0);

                //Set the PWM duty cycle to 50%.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 1, 32768, 0, 0);

                //Enable Counter0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 1, 0, 0);

                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 1, 1, 0, 0);

                //Execute the requests.
                LJUD.GoOne(u6.ljhandle);

                //Now add requests that will be processed every iteration of the loop.

                //Add analog input requests.
                for (j = 0; j < numChannels; j++)
                {
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, (LJUD.CHANNEL)j, 0, 0, 0);
                }

                //Set DAC0 to 2.5 volts.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DAC, 0, 2.5, 0, 0);

                //Read CIO digital lines.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 16, 0, 4, 0);

                //Only do the timer/counter stuff if there are less than 8 analog inputs.
                if (numChannels <= 8)
                {
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_COUNTER, 0, 0, 0, 0);

                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_COUNTER, 1, 0, 0, 0);

                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_TIMER, 0, 0, 0, 0);

                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_TIMER, 1, 0, 0, 0);

                    //Set the PWM duty cycle to 50%.
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 32768, 0, 0);

                    //Set the PWM duty cycle to 50%.
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 1, 32768, 0, 0);
                }
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            time = Environment.TickCount;

            for (i = 0; i < numIterations; i++)
            {
                //Execute the requests.
                try { LJUD.GoOne(u6.ljhandle); }
                catch (LabJackUDException e) { showErrorMessage(e); }

                //Get all the results.  The input measurement results are stored.  All other
                //results are for configuration or output requests so we are just checking
                //whether there was an error.
                LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                bool finished = false;
                while (!finished)
                {
                    switch (ioType)
                    {
                    case LJUD.IO.GET_AIN:
                        ValueAIN[(int)channel] = dblValue;
                        break;

                    case LJUD.IO.GET_DIGITAL_PORT:
                        ValueDIPort = dblValue;
                        break;
                    }

                    try{ LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                        {
                            finished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }
            }


            time = Environment.TickCount - time;

            Console.Out.WriteLine("Milleseconds per iteration = {0:0.000}\n", (double)time / (double)numIterations);

            Console.Out.WriteLine("\nDigital Input = {0:0.###}\n", ValueDIPort);

            Console.Out.WriteLine("\nAIN readings from last iteration:\n");
            for (j = 0; j < numChannels; j++)
            {
                Console.Out.WriteLine("{0:0.000}\n", ValueAIN[j]);
            }

            Console.ReadLine();             // Pause for user
        }
Exemplo n.º 17
0
        public void performActions()
        {
            //	long lngGetNextIteration;
            //	LJUD.IO ioType=0, channel=0;
            //	double dblValue=0;

            long   i      = 0;
            double pinNum = 0;              //0 means the LJTick-DAC is connected to FIO0/FIO1.

            int[]    achrUserMem  = new int[64];
            double[] adblCalMem   = new double[4];
            double   serialNumber = 0;
            Random   random       = new Random();

            // Dummy variables to satisfy certain method signatures
            double dummyDouble = 0;

            //Open the LabJack.
            try
            {
                device = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //Specify where the LJTick-DAC is plugged in.
                //This is just setting a parameter in the driver, and not actually talking
                //to the hardware, and thus executes very fast.
                LJUD.ePut(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TDAC_SCL_PIN_NUM, pinNum, 0);

                //Set DACA to 1.2 volts.  If the driver has not previously talked to an LJTDAC
                //on the specified pins, it will first retrieve and store the cal constants.  The
                //low-level I2C command can only update 1 DAC channel at a time, so there
                //is no advantage to doing two updates within a single add-go-get block.
                LJUD.ePut(device.ljhandle, LJUD.IO.TDAC_COMMUNICATION, LJUD.CHANNEL.TDAC_UPDATE_DACA, 1.2, 0);
                Console.Out.WriteLine("DACA set to 1.2 volts\n\n");

                //Set DACB to 2.3 volts.
                LJUD.ePut(device.ljhandle, LJUD.IO.TDAC_COMMUNICATION, LJUD.CHANNEL.TDAC_UPDATE_DACB, 2.3, 0);
                Console.Out.WriteLine("DACB set to 2.3 volts\n\n");



                //Now for more advanced operations.


                //If at this point you removed that LJTDAC and plugged a different one
                //into the same pins, the driver would not know and would use the wrong
                //cal constants on future updates.  If we do a cal constant read,
                //the driver will store the constants from the new read.
                LJUD.eGet(device.ljhandle, LJUD.IO.TDAC_COMMUNICATION, LJUD.CHANNEL.TDAC_READ_CAL_CONSTANTS, ref dummyDouble, adblCalMem);
                Console.Out.WriteLine("DACA Slope = {0:0.0} bits/volt\n", adblCalMem[0]);
                Console.Out.WriteLine("DACA Offset = {0:0.0} bits\n", adblCalMem[1]);
                Console.Out.WriteLine("DACB Slope = {0:0.0} bits/volt\n", adblCalMem[2]);
                Console.Out.WriteLine("DACB Offset = {0:0.0} bits\n\n", adblCalMem[3]);



                //Read the serial number.
                LJUD.eGet(device.ljhandle, LJUD.IO.TDAC_COMMUNICATION, LJUD.CHANNEL.TDAC_SERIAL_NUMBER, ref serialNumber, 0);
                Console.Out.WriteLine("LJTDAC Serial Number = {0:0}\n\n", serialNumber);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }
            Console.ReadLine();             // Pause for user	return;
        }
Exemplo n.º 18
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (BattleParameterId != 0)
            {
                hash ^= BattleParameterId.GetHashCode();
            }
            if (BattleNameJp.Length != 0)
            {
                hash ^= BattleNameJp.GetHashCode();
            }
            if (U3 != 0)
            {
                hash ^= U3.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (U9 != 0)
            {
                hash ^= U9.GetHashCode();
            }
            if (U10 != 0)
            {
                hash ^= U10.GetHashCode();
            }
            if (U11 != 0)
            {
                hash ^= U11.GetHashCode();
            }
            if (U12 != 0)
            {
                hash ^= U12.GetHashCode();
            }
            if (U13 != 0)
            {
                hash ^= U13.GetHashCode();
            }
            if (U14 != 0)
            {
                hash ^= U14.GetHashCode();
            }
            if (U15 != 0)
            {
                hash ^= U15.GetHashCode();
            }
            if (U16 != 0)
            {
                hash ^= U16.GetHashCode();
            }
            if (U17 != 0)
            {
                hash ^= U17.GetHashCode();
            }
            if (NpcUnitId1 != 0)
            {
                hash ^= NpcUnitId1.GetHashCode();
            }
            if (NpcUnitId2 != 0)
            {
                hash ^= NpcUnitId2.GetHashCode();
            }
            if (NpcUnitId3 != 0)
            {
                hash ^= NpcUnitId3.GetHashCode();
            }
            if (BackgroundId != 0)
            {
                hash ^= BackgroundId.GetHashCode();
            }
            if (TrainerNameId.Length != 0)
            {
                hash ^= TrainerNameId.GetHashCode();
            }
            if (U23 != 0)
            {
                hash ^= U23.GetHashCode();
            }
            if (U24 != 0)
            {
                hash ^= U24.GetHashCode();
            }
            if (U25 != 0)
            {
                hash ^= U25.GetHashCode();
            }
            if (U26 != 0)
            {
                hash ^= U26.GetHashCode();
            }
            if (U27 != 0)
            {
                hash ^= U27.GetHashCode();
            }
            if (U28 != 0)
            {
                hash ^= U28.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 19
0
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            double[] dummyDoubleArray = { 0 };

            //Open the Labjack with id 2
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "1", true);                 // Connection through USB

                //First requests to configure the timer and counter.  These will be
                //done with and add/go/get block.

                //Set the timer/counter pin offset to 0, which will put the first
                //timer/counter on FIO0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_COUNTER_PIN_OFFSET, 0, 0, 0);

                //Use the 48 MHz timer clock base with divider.  Since we are using clock with divisor
                //support, Counter0 is not available.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_BASE, (double)LJUD.TIMERCLOCKS.MHZ48_DIV, 0, 0);

                //Set the divisor to 48 so the actual timer clock is 1 MHz.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_DIVISOR, 48, 0, 0);

                //Enable 1 timer.  It will use FIO0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 1, 0, 0);

                //Make sure Counter0 is disabled.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 0, 0, 0);

                //Enable Counter1.  It will use FIO1 since 1 timer is enabled.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 1, 1, 0, 0);

                //Configure Timer0 as 8-bit PWM.  Frequency will be 1M/256 = 3906 Hz.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_MODE, 0, (double)LJUD.TIMERMODE.PWM8, 0, 0);

                //Set the PWM duty cycle to 50%.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 32768, 0, 0);

                //Execute the requests.
                LJUD.GoOne(u6.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            bool finished = false;

            while (!finished)
            {
                try{ LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            try
            {
                //Wait 1 second.
                Thread.Sleep(1000);

                //Request a read from the counter.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_COUNTER, (LJUD.CHANNEL) 1, ref dblValue, dummyDoubleArray);

                //This should read roughly 4k counts if FIO0 is shorted to FIO1.
                Console.Out.WriteLine("Counter = {0:0.0}\n", dblValue);

                //Wait 1 second.
                Thread.Sleep(1000);

                //Request a read from the counter.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_COUNTER, (LJUD.CHANNEL) 1, ref dblValue, dummyDoubleArray);

                //This should read about 3906 counts more than the previous read.
                Console.Out.WriteLine("Counter = {0:0.0}\n", dblValue);

                //Reset all pin assignments to factory default condition.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PIN_CONFIGURATION_RESET, 0, 0, 0);

                //The PWM output sets FIO0 to output, so we do a read here to set
                //it to input.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 0, ref dblValue, 0);
            }
            catch (LabJackUDException e)
            {
                if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                {
                    finished = true;
                }
                else
                {
                    showErrorMessage(e);
                }
            }

            Console.ReadLine();             // Pause for user
        }
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;
            double       valueAIN = 0;        //Analog Voltage Value

            LJUD.CHANNEL tempChannel = 0;     //Channel which the TC/LJTIA is on (AIN0).

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            double tcVolts = 0, cjTempK = 0, pTCTempK = 0;

            LJUD.THERMOCOUPLETYPE tcType = LJUD.THERMOCOUPLETYPE.K;
            //Set the temperature sensor to a k type thermocouple
            //Possible Thermocouple types are:
            //B = 6001
            //E = 6002
            //J = 6003
            //K = 6004
            //N = 6005
            //R = 6006
            //S = 6007
            //T = 6008


            //Offset calibration:  The nominal voltage offset of the LJTick is
            //0.4 volts.  For improved accuracy, though, you should measure the
            //overall system offset.  We know that if the end of the TC is at the
            //same temperature as the cold junction, the voltage should be zero.
            //Put the end of the TC near the LJTIA to make sure they are at the same
            //temperature, and note the voltage measured by FIO4.  This is the actual
            //offset that can be entered below.
            double offsetVoltage         = 0.4;

            //Open the first found LabJack U6 via USB.
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Constantly acquire temperature readings until a key is pressed
            bool keyPressed = false;

            while (!keyPressed)
            {
                ioType   = 0;
                channel  = 0;
                tcVolts  = 0;
                cjTempK  = 0;
                pTCTempK = 0;

                try
                {
                    //Add analog input requests.
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, (LJUD.CHANNEL)tempChannel, 0, 0, 0);

                    //Add request for internal temperature reading -- Internal temp sensor uses
                    //analog input channel 14.
                    LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 14, 0, 0, 0);

                    //Execute all requests on the labjack u6.ljhandle.
                    LJUD.GoOne(u6.ljhandle);

                    //Get all the results.  The first result should be the voltage reading of the
                    //temperature channel.
                    LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    showErrorMessage(e);
                }

                //Get the rest of the results.  There should only be one more on the request
                //queue.
                bool finished = false;
                while (!finished)
                {
                    if (ioType == LJUD.IO.GET_AIN)
                    {
                        if (channel == tempChannel)
                        {
                            valueAIN = dblValue;
                        }

                        if (channel == (LJUD.CHANNEL) 14)
                        {
                            cjTempK = dblValue;
                        }
                    }

                    try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        if (e.LJUDError == LJUD.LJUDERROR.NO_DATA_AVAILABLE)
                        {
                            finished = true;
                        }
                        else if (e.LJUDError > LJUD.LJUDERROR.MIN_GROUP_ERROR)
                        {
                            finished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }


                //Display Voltage Reading
                Console.Out.WriteLine("Analog {0:0}:           {1:0.######}\n", (int)tempChannel, valueAIN);

                //Display the internal temperature sensor reading.  This example uses
                //that value for cold junction compensation.
                Console.Out.WriteLine("U6 internal sensor:  {0:0.0} deg K\n", (double)cjTempK);

                //To get the thermocouple voltage we subtract the offset from the AIN
                //voltage and divide by the LJTIA gain.
                tcVolts = (valueAIN - offsetVoltage) / 51;

                //Convert TC voltage to temperature.
                LJUD.TCVoltsToTemp(tcType, tcVolts, cjTempK, ref pTCTempK);

                //Display Temperature
                Console.Out.WriteLine("Thermocouple sensor:  {0:0.0} deg K\n\n", pTCTempK);

                Thread.Sleep(1500);                      // Short pause

                keyPressed = Win32Interop._kbhit() != 0; // If a key was hit break out of the loop
            }
        }
Exemplo n.º 21
0
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;

            double numI2CBytesToWrite;
            double numI2CBytesToRead;

            byte[] writeArray = new byte[128];
            byte[] readArray = new byte[128];
            long   i = 0;
            long   serialNumber = 0;
            double slopeDACA = 0, offsetDACA = 0, slopeDACB = 0, offsetDACB = 0;
            double writeACKS = 0, expectedACKS = 0;

            byte[] bytes;

            // Dummy variables to satify certain method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            // Setup random number generator
            Random random = new Random();

            //Open the LabJack.
            try
            {
                device = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Configure the I2C communication.
            //The address of the EEPROM on the LJTick-DAC is 0xA0.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_ADDRESS_BYTE, 160, 0, 0);

            //SCL is FIO0
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_SCL_PIN_NUM, 0, 0, 0);

            //SDA is FIO1
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_SDA_PIN_NUM, 1, 0, 0);

            //See description of low-level I2C function.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_OPTIONS, 0, 0, 0);

            //See description of low-level I2C function.  0 is max speed of about 130 kHz.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_SPEED_ADJUST, 0, 0, 0);

            //Execute the requests on a single LabJack.
            LJUD.GoOne(device.ljhandle);


            //Get all the results just to check for errors.
            LJUD.GetFirstResult(device.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            bool finished = false;

            while (!finished)
            {
                try{ LJUD.GetNextResult(device.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            //Initial read of EEPROM bytes 0-3 in the user memory area.
            //We need a single I2C transmission that writes the address and then reads
            //the data.  That is, there needs to be an ack after writing the address,
            //not a stop condition.  To accomplish this, we use Add/Go/Get to combine
            //the write and read into a single low-level call.
            numI2CBytesToWrite = 1;
            writeArray[0]      = 0;         //Memory address.  User area is 0-63.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            numI2CBytesToRead = 4;
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, numI2CBytesToRead, readArray, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }


            //When the GoOne processed the read request, the read data was put into the readArray buffer that
            //we passed, so this GetResult is also just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, ref dummyDouble);

            //Display the first 4 elements.
            Console.Out.WriteLine("Read User Mem [0-3] = {0:0.#}, {1:0.#}, {2:0.#}, {3:0.#}\n", readArray[0], readArray[1], readArray[2], readArray[3]);



            //Write EEPROM bytes 0-3 in the user memory area, using the page write technique.  Note
            //that page writes are limited to 16 bytes max, and must be aligned with the 16-byte
            //page intervals.  For instance, if you start writing at address 14, you can only write
            //two bytes because byte 16 is the start of a new page.
            numI2CBytesToWrite = 5;
            writeArray[0]      = 0;         //Memory address.  User area is 0-63.

            //Create 4 new pseudo-random numbers to write.
            for (i = 1; i < 5; i++)
            {
                writeArray[i] = (byte)random.Next(256);
            }

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            //Delay to allow the EEPROM to complete the write cycle.  Datasheet says 1.5 ms max.
            System.Threading.Thread.Sleep(2);

            Console.Out.WriteLine("Write User Mem [0-3] = {0:0.#}, {1:0.#}, {2:0.#}, {3:0.#}\n", writeArray[1], writeArray[2], writeArray[3], writeArray[4]);


            //Final read of EEPROM bytes 0-3 in the user memory area.
            //We need a single I2C transmission that writes the address and then reads
            //the data.  That is, there needs to be an ack after writing the address,
            //not a stop condition.  To accomplish this, we use Add/Go/Get to combine
            //the write and read into a single low-level call.
            numI2CBytesToWrite = 1;
            writeArray[0]      = 0;         //Memory address.  User area is 0-63.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            numI2CBytesToRead = 4;
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, numI2CBytesToRead, readArray, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            //When the GoOne processed the read request, the read data was put into the readArray buffer that
            //we passed, so this GetResult is also just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, ref dummyDouble);

            //Display the first 4 elements.
            Console.Out.WriteLine("Read User Mem [0-3] = {0:0.#}, {1:0.#}, {2:0.#}, {3:0.#}\n\n", readArray[0], readArray[1], readArray[2], readArray[3]);

            //Read cal constants and serial number.
            //We need a single I2C transmission that writes the address and then reads
            //the data.  That is, there needs to be an ack after writing the address,
            //not a stop condition.  To accomplish this, we use Add/Go/Get to combine
            //the write and read into a single low-level call.
            //
            //64-71   DACA Slope
            //72-79   DACA Offset
            //80-87   DACB Slope
            //88-95   DACB Offset
            //96-99   Serial Number
            //
            numI2CBytesToWrite = 1;
            writeArray[0]      = 64;         //Memory address.  Cal constants start at 64.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            numI2CBytesToRead = 36;
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, numI2CBytesToRead, readArray, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            //When the GoOne processed the read request, the read data was put into the readArray buffer that
            //we passed, so this GetResult is also just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, ref dummyDouble);

            //Convert fixed point values to floating point doubles.
            slopeDACA  = BitConverter.ToInt64(readArray, 0) / (double)4294967296;
            offsetDACA = BitConverter.ToInt64(readArray, 8) / (double)4294967296;
            slopeDACB  = BitConverter.ToInt64(readArray, 16) / (double)4294967296;
            offsetDACB = BitConverter.ToInt64(readArray, 24) / (double)4294967296;
            Console.Out.WriteLine("DACA Slope = {0:0.0} bits/volt\n", slopeDACA);
            Console.Out.WriteLine("DACA Offset = {0:0.0} bits\n", offsetDACA);
            Console.Out.WriteLine("DACB Slope = {0:0.0} bits/volt\n", slopeDACB);
            Console.Out.WriteLine("DACB Offset = {0:0.0} bits\n", offsetDACB);

            //Convert serial number bytes to long.
            serialNumber = (int)readArray[32] + ((int)readArray[33] << 8) + ((int)readArray[34] << 16) + ((int)readArray[35] << 24);
            Console.Out.WriteLine("Serial Number = {0:0.#}\n\n", serialNumber);



            //Update both DAC outputs.

            //Set the I2C address in the UD driver so that we not talk to the DAC chip.
            //The address of the DAC chip on the LJTick-DAC is 0x24.
            LJUD.ePut(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_ADDRESS_BYTE, 36, 0);


            //Set DACA to 2.4 volts.
            numI2CBytesToWrite = 3;
            writeArray[0]      = 48;                                                            //Write and update DACA.
            writeArray[1]      = Convert.ToByte((ulong)((2.4 * slopeDACA) + offsetDACA) / 256); //Upper byte of binary DAC value.
            writeArray[2]      = Convert.ToByte((ulong)((2.4 * slopeDACA) + offsetDACA) % 256); //Lower byte of binary DAC value.

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            Console.Out.WriteLine("DACA set to 2.4 volts\n\n");


            //Set DACB to 0.5 volts.
            numI2CBytesToWrite = 3;
            writeArray[0]      = 49;                                                            //Write and update DACB.
            writeArray[1]      = Convert.ToByte((ulong)((0.5 * slopeDACB) + offsetDACB) / 256); //Upper byte of binary DAC value.
            writeArray[2]      = Convert.ToByte((ulong)((0.5 * slopeDACB) + offsetDACB) % 256); //Lower byte of binary DAC value.

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            Console.Out.WriteLine("DACB set to 0.5 volts\n");

            Console.ReadLine();             // Pause for user	return;
        }
Exemplo n.º 22
0
        /// <summary>
        /// Actually performs actions on the U6 and updates the displaye
        /// </summary>
        /// <param name="sender">The object that executed this method</param>
        /// <param name="e">Event parameters</param>
        private void goButton_Click(object sender, System.EventArgs e)
        {
            double dblDriverVersion;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value2 = 0, Value3 = 0;
            double       ValueDIBit = 0, ValueDIPort = 0, ValueCounter = 0;

            // dummy variables to satisfy certian method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            //Read and display the UD version.
            dblDriverVersion    = LJUD.GetDriverVersion();
            versionDisplay.Text = String.Format("{0:0.000}", dblDriverVersion);

            // Open U6
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //First some configuration commands.  These will be done with the ePut
                //function which combines the add/go/get into a single call.

                //Configure the resolution of the analog inputs (pass a non-zero value for quick sampling).
                //See section 2.6 / 3.1 for more information.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 0, 0);

                //Configure the analog input range on channels 2 and 3 for bipolar 10v.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 2, (double)LJUD.RANGES.BIP10V, 0);

                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 3, (double)LJUD.RANGES.BIP10V, 0);

                //Enable Counter0 which will appear on FIO0 (assuming no other
                //program has enabled any timers or Counter1).
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 1, 0);

                //Now we add requests to write and read I/O.  These requests
                //will be processed repeatedly by go/get statements in every
                //iteration of the while loop below.

                //Request AIN2 and AIN3.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 2, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 3, 0, 0, 0);

                //Set DAC0 to 2.5 volts.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DAC, 0, 2.5, 0, 0);

                //Read digital input FIO1.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 1, 0, 0, 0);

                //Read digital inputs FIO2 through FIO3.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 2, 0, 2, 0);
                // LJUD.AddRequest (u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 2, 0, 3, 0); would request through FIO4

                //Request the value of Counter0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_COUNTER, 0, 0, 0, 0);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //Execute the requests.
                LJUD.GoOne(u6.ljhandle);

                //Get all the results.  The input measurement results are stored.  All other
                //results are for configuration or output requests so we are just checking
                //whether there was an error.
                LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            bool isFinished = false;

            while (!isFinished)
            {
                switch (ioType)
                {
                case LJUD.IO.GET_AIN:
                    switch ((int)channel)
                    {
                    case 2:
                        Value2 = dblValue;
                        break;

                    case 3:
                        Value3 = dblValue;
                        break;
                    }
                    break;

                case LJUD.IO.GET_DIGITAL_BIT:
                    ValueDIBit = dblValue;
                    break;

                case LJUD.IO.GET_DIGITAL_PORT:
                    ValueDIPort = dblValue;
                    break;

                case LJUD.IO.GET_COUNTER:
                    ValueCounter = dblValue;
                    break;
                }
                try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException exc)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (exc.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        ShowErrorMessage(exc);
                    }
                }
            }

            // Display results
            ain2Display.Text     = String.Format("{0:0.###}", Value2);
            ain3Display.Text     = String.Format("{0:0.###}", Value3);
            fio1Display.Text     = String.Format("{0:0.###}", ValueDIBit);
            fio2Display.Text     = String.Format("{0:0.###}", ValueDIPort);         //Will read 30 (binary 11) if both lines are pulled-high as normal.
            counter0Display.Text = String.Format("{0:0.###}", ValueCounter);
        }
Exemplo n.º 23
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (DeckPresetId != 0)
            {
                hash ^= DeckPresetId.GetHashCode();
            }
            if (Character1Id != 0L)
            {
                hash ^= Character1Id.GetHashCode();
            }
            if (Trainer1Id != 0L)
            {
                hash ^= Trainer1Id.GetHashCode();
            }
            if (U4 != 0)
            {
                hash ^= U4.GetHashCode();
            }
            if (U5 != 0)
            {
                hash ^= U5.GetHashCode();
            }
            if (U6 != 0)
            {
                hash ^= U6.GetHashCode();
            }
            if (U7 != 0)
            {
                hash ^= U7.GetHashCode();
            }
            if (U8 != 0)
            {
                hash ^= U8.GetHashCode();
            }
            if (U9 != 0)
            {
                hash ^= U9.GetHashCode();
            }
            if (Character2Id != 0L)
            {
                hash ^= Character2Id.GetHashCode();
            }
            if (Trainer2Id != 0L)
            {
                hash ^= Trainer2Id.GetHashCode();
            }
            if (U14 != 0)
            {
                hash ^= U14.GetHashCode();
            }
            if (U15 != 0)
            {
                hash ^= U15.GetHashCode();
            }
            if (U16 != 0)
            {
                hash ^= U16.GetHashCode();
            }
            if (U17 != 0)
            {
                hash ^= U17.GetHashCode();
            }
            if (U18 != 0)
            {
                hash ^= U18.GetHashCode();
            }
            if (U19 != 0)
            {
                hash ^= U19.GetHashCode();
            }
            if (Character3Id != 0L)
            {
                hash ^= Character3Id.GetHashCode();
            }
            if (Trainer3Id != 0L)
            {
                hash ^= Trainer3Id.GetHashCode();
            }
            if (U24 != 0)
            {
                hash ^= U24.GetHashCode();
            }
            if (U25 != 0)
            {
                hash ^= U25.GetHashCode();
            }
            if (U26 != 0)
            {
                hash ^= U26.GetHashCode();
            }
            if (U27 != 0)
            {
                hash ^= U27.GetHashCode();
            }
            if (U28 != 0)
            {
                hash ^= U28.GetHashCode();
            }
            if (U29 != 0)
            {
                hash ^= U29.GetHashCode();
            }
            if (Item1Id != 0L)
            {
                hash ^= Item1Id.GetHashCode();
            }
            if (U33 != 0)
            {
                hash ^= U33.GetHashCode();
            }
            if (U34 != 0)
            {
                hash ^= U34.GetHashCode();
            }
            if (Item2Id != 0L)
            {
                hash ^= Item2Id.GetHashCode();
            }
            if (U36 != 0)
            {
                hash ^= U36.GetHashCode();
            }
            if (U37 != 0)
            {
                hash ^= U37.GetHashCode();
            }
            if (Item3Id != 0L)
            {
                hash ^= Item3Id.GetHashCode();
            }
            if (U39 != 0)
            {
                hash ^= U39.GetHashCode();
            }
            if (U40 != 0)
            {
                hash ^= U40.GetHashCode();
            }
            if (_unknownFields != null)
            {
                hash ^= _unknownFields.GetHashCode();
            }
            return(hash);
        }
Exemplo n.º 24
0
        /// <summary>
        /// Configure and start the stream on the LabJack
        /// </summary>
        /// <returns>True if successful and false otherwise</returns>
        private bool StartStreaming()
        {
            //Read and display the UD version.
            dblValue            = LJUD.GetDriverVersion();
            versionDisplay.Text = String.Format("{0:0.000}", dblValue);

            try
            {
                //Open the first found LabJack U6.
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //Read and display the hardware version of this U6.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.HARDWARE_VERSION, ref dblValue, 0);
                hardwareDisplay.Text = String.Format("{0:0.000}", dblValue);

                //Read and display the firmware version of this U6.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.FIRMWARE_VERSION, ref dblValue, 0);
                firmwareDisplay.Text = String.Format("{0:0.000}", dblValue);

                //Configure the analog input range on channel 0 for bipolar +-10 volts.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, 0, (double)LJUD.RANGES.BIP10V, 0, 0);

                //Configure the stream:
                //Set the scan rate.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_SCAN_FREQUENCY, scanRate, 0, 0);

                //Give the driver a 5 second buffer (scanRate * 2 channels * 5 seconds).
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_BUFFER_SIZE, scanRate * 2 * 5, 0, 0);

                //Configure reads to retrieve whatever data is available without waiting (wait mode LJUD.STREAMWAITMODES.NONE).
                //See comments below to change this program to use LJUD.STREAMWAITMODES.SLEEP mode.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_WAIT_MODE, (double)LJUD.STREAMWAITMODES.NONE, 0, 0);

                //Define the scan list as AIN0 then AIN1.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.CLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 0, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 1, 0, 0, 0);

                //Execute the list of requests.
                LJUD.GoOne(u6.ljhandle);
            }
            catch (LabJackUDException e)
            {
                ShowErrorMessage(e);
                return(false);
            }

            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { ShowErrorMessage(e); }
            bool finished = false;

            while (!finished)
            {
                try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        ShowErrorMessage(e);
                    }
                }
            }

            //Start the stream.
            try { LJUD.eGet(u6.ljhandle, LJUD.IO.START_STREAM, 0, ref dblValue, 0); }
            catch (LabJackUDException e)
            {
                ShowErrorMessage(e);
                return(false);
            }

            //The actual scan rate is dependent on how the desired scan rate divides into
            //the LabJack clock.  The actual scan rate is returned in the value parameter
            //from the start stream command.
            scanDisplay.Text   = String.Format("{0:0.000}", dblValue);
            sampleDisplay.Text = String.Format("{0:0.000}", 2 * dblValue);          // # channels * scan rate

            // The stream started successfully
            return(true);
        }
Exemplo n.º 25
0
        public void preformActions()
        {
            long   lngGetNextIteration;
            double dblDriverVersion;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value12 = 9999, Value22 = 9999, Value32 = 9999;
            double       Value13 = 9999, Value23 = 9999, Value33 = 9999;

            //Read and display the UD version.
            dblDriverVersion = LJUD.GetDriverVersion();
            Console.Out.WriteLine("UD Driver Version = {0:0.000}\n\n", dblDriverVersion);

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            //Open the U6 with local ID 2.
            try
            {
                unit2 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }
            //Open the U6 with local ID 3.
            try
            {
                unit3 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //The following commands will use the add-go-get method to group
                //multiple requests into a single low-level function.

                //Request a single-ended reading from AIN1.
                LJUD.AddRequest(unit2.ljhandle, LJUD.IO.GET_AIN, 1, 0, 0, 0);
                LJUD.AddRequest(unit3.ljhandle, LJUD.IO.GET_AIN, 1, 0, 0, 0);

                //Request a single-ended reading from AIN2.
                LJUD.AddRequest(unit2.ljhandle, LJUD.IO.GET_AIN, 2, 0, 0, 0);
                LJUD.AddRequest(unit3.ljhandle, LJUD.IO.GET_AIN, 2, 0, 0, 0);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            bool isFinished = false;

            while (!isFinished)
            {
                try
                {
                    //Execute all requests on all open LabJacks.
                    LJUD.Go();

                    //Get all the results for unit 2.  The input measurement results are stored.
                    LJUD.GetFirstResult(unit2.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    showErrorMessage(e);
                }

                bool unit2Finished = false;
                while (!unit2Finished)
                {
                    switch (ioType)
                    {
                    case LJUD.IO.GET_AIN:
                        switch ((int)channel)
                        {
                        case 1:
                            Value12 = dblValue;
                            break;

                        case 2:
                            Value22 = dblValue;
                            break;
                        }
                        break;

                    case LJUD.IO.GET_AIN_DIFF:
                        Value32 = dblValue;
                        break;
                    }

                    try { LJUD.GetNextResult(unit2.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                        if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                        {
                            unit2Finished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }


                //Get all the results for unit 3.  The input measurement results are stored.
                try { LJUD.GetFirstResult(unit3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)  { showErrorMessage(e); }

                bool unit3Finished = false;
                while (!unit3Finished)
                {
                    switch (ioType)
                    {
                    case LJUD.IO.GET_AIN:
                        switch ((int)channel)
                        {
                        case 1:
                            Value13 = dblValue;
                            break;

                        case 2:
                            Value23 = dblValue;
                            break;
                        }
                        break;

                    case LJUD.IO.GET_AIN_DIFF:
                        Value33 = dblValue;
                        break;
                    }

                    try { LJUD.GetNextResult(unit3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                        if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                        {
                            unit3Finished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }



                Console.Out.WriteLine("AIN1 (Unit 2) = {0:0.###}\n", Value12);
                Console.Out.WriteLine("AIN1 (Unit 3) = {0:0.###}\n", Value13);
                Console.Out.WriteLine("AIN2 (Unit 2) = {0:0.###}\n", Value22);
                Console.Out.WriteLine("AIN2 (Unit 3) = {0:0.###}\n", Value23);
                Console.Out.WriteLine("AIN3 (Unit 2) = {0:0.###}\n", Value32);
                Console.Out.WriteLine("AIN3 (Unit 3) = {0:0.###}\n", Value33);

                Console.Out.WriteLine("\nPress Enter to go again or (q) to quit\n");
                String str1 = Console.ReadLine();                 // Pause for user
                isFinished = str1 == "q";
            }
        }
Exemplo n.º 26
0
        /// <summary>
        /// Opens the LabJack, gets the UD driver version, and
        /// configures the device.
        /// </summary>
        /// <param name="sender">The object that called this event</param>
        /// <param name="e">Event details</param>
        private void TimedWindow_Load(object sender, System.EventArgs e)
        {
            double dblDriverVersion;

            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;

            // dummy variables to satisfy certian method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            // Create the event timer but do not start it
            updateTimer          = new System.Timers.Timer();
            updateTimer.Elapsed += new ElapsedEventHandler(TimerEvent);
            updateTimer.Interval = TIMER_INTERVAL;

            // Disable the start button while the device is loading
            goStopButton.Enabled = false;
            Update();

            //Read and display the UD version.
            dblDriverVersion    = LJUD.GetDriverVersion();
            versionDisplay.Text = String.Format("{0:0.000}", dblDriverVersion);

            // Open and configure U6
            try
            {
                //Open the device
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);

                //Configure the resolution of the analog inputs (pass a non-zero value for quick sampling).
                //See section 2.6 / 3.1 for more information.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 0, 0, 0);

                //Configure the analog input range on channels 2 and 3 for bipolar 10v.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 2, (double)LJUD.RANGES.BIP10V, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 3, (double)LJUD.RANGES.BIP10V, 0, 0);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //Execute the requests.
                LJUD.GoOne(u6.ljhandle);

                //Get all the results.  The input measurement results are stored.  All other
                //results are for configuration or output requests so we are just checking
                //whether there was an error. The rest of the results are in the below loop.
                LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            bool isFinished = false;

            while (!isFinished)
            {
                try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException exc)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (exc.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        ShowErrorMessage(exc);
                        return;
                    }
                }
            }

            // Enable the start button
            goStopButton.Enabled = true;
        }
Exemplo n.º 27
0
        public void performActions()
        {
            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value2 = 0, Value3 = 0;
            double       ValueDIBit = 0, ValueDIPort = 0, ValueCounter = 0;

            // dummy variables to satisfy certian method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            // Open U6
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //First some configuration commands.  These will be done with the ePut
                //function which combines the add/go/get into a single call.

                //Configure the resolution of the analog inputs (pass a non-zero value for quick sampling).
                //See section 2.6 / 3.1 for more information.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 0, 0);

                //Configure the analog input range on channels 2 and 3 for bipolar 10v.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 2, (double)LJUD.RANGES.BIP10V, 0);

                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 3, (double)LJUD.RANGES.BIP10V, 0);

                //Enable Counter0 which will appear on FIO0 (assuming no other
                //program has enabled any timers or Counter1).
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 1, 0);

                //Now we add requests to write and read I/O.  These requests
                //will be processed repeatedly by go/get statements in every
                //iteration of the while loop below.

                //Request AIN2 and AIN3.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 2, 0, 0, 0);

                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 3, 0, 0, 0);

                //Set DAC0 to 2.5 volts.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DAC, 0, 2.5, 0, 0);

                //Read digital input FIO1.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 1, 0, 0, 0);

                //Set digital output FIO2 to output-high.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, 2, 1, 0, 0);

                //Read digital inputs FIO3 through FIO7.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 3, 0, 5, 0);

                //Request the value of Counter0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_COUNTER, 0, 0, 0, 0);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            bool requestedExit = false;

            while (!requestedExit)
            {
                try
                {
                    //Execute the requests.
                    LJUD.GoOne(u6.ljhandle);

                    //Get all the results.  The input measurement results are stored.  All other
                    //results are for configuration or output requests so we are just checking
                    //whether there was an error.
                    LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    showErrorMessage(e);
                }

                bool isFinished = false;
                while (!isFinished)
                {
                    switch (ioType)
                    {
                    case LJUD.IO.GET_AIN:
                        switch ((int)channel)
                        {
                        case 2:
                            Value2 = dblValue;
                            break;

                        case 3:
                            Value3 = dblValue;
                            break;
                        }
                        break;

                    case LJUD.IO.GET_DIGITAL_BIT:
                        ValueDIBit = dblValue;
                        break;

                    case LJUD.IO.GET_DIGITAL_PORT:
                        ValueDIPort = dblValue;
                        break;

                    case LJUD.IO.GET_COUNTER:
                        ValueCounter = dblValue;
                        break;
                    }
                    try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                        if (e.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                        {
                            isFinished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }

                // Output the results
                Console.Out.WriteLine("AIN2 = {0:0.00000}\n", Value2);
                Console.Out.WriteLine("AIN3 = {0:0.00000}\n", Value3);
                Console.Out.WriteLine("FIO1 = {0:0.00000}\n", ValueDIBit);
                Console.Out.WriteLine("FIO3-FIO7 = {0:0.00000}\n", ValueDIPort);                         //Will read 31 if all 5 lines are pulled-high as normal.
                Console.Out.WriteLine("Counter0 (FIO0) = {0:0.00000}\n", ValueCounter);

                Console.Out.WriteLine("\nPress Enter to go again or (q) to quit\n");
                requestedExit = Console.ReadLine().Equals("q");
            }
        }
Exemplo n.º 28
0
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;
            double       numSPIBytesToTransfer;

            byte[] dataArray = new byte[50];

            //Open the LabJack U6.
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //First, configure the SPI communication.

                //Enable automatic chip-select control.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_AUTO_CS, 1, 0, 0);

                //Do not disable automatic digital i/o direction configuration.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_DISABLE_DIR_CONFIG, 0, 0, 0);

                //Mode A:  CPHA=1, CPOL=1.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_MODE, 0, 0, 0);

                //125kHz clock.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_CLOCK_FACTOR, 0, 0, 0);

                //MOSI is FIO2
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_MOSI_PIN_NUM, 2, 0, 0);

                //MISO is FIO3
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_MISO_PIN_NUM, 3, 0, 0);

                //CLK is FIO0
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_CLK_PIN_NUM, 0, 0, 0);

                //CS is FIO1
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_CS_PIN_NUM, 1, 0, 0);


                //Execute the requests on a single LabJack.  The driver will use a
                //single low-level TimerCounter command to handle all the requests above.
                LJUD.GoOne(u6.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }


            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            bool finished = false;

            while (!finished)
            {
                try{ LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }

                catch (LabJackUDException e)
                {
                    if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }


            //This example transfers 4 test bytes.
            numSPIBytesToTransfer = 4;
            dataArray[0]          = 175;
            dataArray[1]          = 245;
            dataArray[2]          = 170;
            dataArray[3]          = 240;

            //Transfer the data.  The write and read is done at the same time.
            try { LJUD.eGet(u6.ljhandle, LJUD.IO.SPI_COMMUNICATION, 0, ref numSPIBytesToTransfer, dataArray); }
            catch (LabJackUDException e) { showErrorMessage(e); }

            //Display the read data.
            Console.Out.WriteLine("dataArray[0] = {0:0.#}\n", dataArray[0]);
            Console.Out.WriteLine("dataArray[1] = {0:0.#}\n", dataArray[1]);
            Console.Out.WriteLine("dataArray[2] = {0:0.#}\n", dataArray[2]);
            Console.Out.WriteLine("dataArray[3] = {0:0.#}\n", dataArray[3]);


            Console.ReadLine();             // Pause for user
        }
Exemplo n.º 29
0
        public void performActions()
        {
            double dblDriverVersion;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value0 = 9999, Value1 = 9999, Value2 = 9999;
            double       ValueDIBit = 9999, ValueDIPort = 9999, ValueCounter = 9999;


            //Read and display the UD version.
            dblDriverVersion = LJUD.GetDriverVersion();
            Console.Out.WriteLine("UD Driver Version = {0:0.000}\n\n", dblDriverVersion);


            //Open the first found LabJack U6.
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }


            //First some configuration commands.  These will be done with the ePut
            //function which combines the add/go/get into a single call.

            //Set the timer/counter pin offset to 3, which will put the first
            //timer/counter on FIO3.
            LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_COUNTER_PIN_OFFSET, 3, 0);

            //Enable Counter1 (FIO3).
            LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, (LJUD.CHANNEL) 1, 1, 0);


            //The following commands will use the add-go-get method to group
            //multiple requests into a single low-level function.

            //Request a single-ended reading from AIN0.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 0, 0, 0, 0);

            //Request a single-ended reading from AIN1.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 1, 0, 0, 0);

            //Request a reading from AIN2 using the Special range.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN_DIFF, 2, 0, 15, 0);

            //Set DAC0 to 3.5 volts.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DAC, 0, 3.5, 0, 0);

            //Set digital output FIO0 to output-high.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, 0, 1, 0, 0);

            //Read digital input FIO1.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 1, 0, 0, 0);

            //Read digital inputs FIO1 through FIO2.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 1, 0, 2, 0);

            //Request the value of Counter1 (FIO3).
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_COUNTER, 1, 0, 0, 0);


            bool requestedExit = false;

            while (!requestedExit)
            {
                try
                {
                    //Execute the requests.
                    LJUD.GoOne(u6.ljhandle);

                    //Get all the results.  The input measurement results are stored.  All other
                    //results are for configuration or output requests so we are just checking
                    //whether there was an error.
                    LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    showErrorMessage(e);
                }

                bool finished = false;
                while (!finished)
                {
                    switch (ioType)
                    {
                    case LJUD.IO.GET_AIN:
                        switch ((int)channel)
                        {
                        case 0:
                            Value0 = dblValue;
                            break;

                        case 1:
                            Value1 = dblValue;
                            break;
                        }
                        break;

                    case LJUD.IO.GET_AIN_DIFF:
                        Value2 = dblValue;
                        break;

                    case LJUD.IO.GET_DIGITAL_BIT:
                        ValueDIBit = dblValue;
                        break;

                    case LJUD.IO.GET_DIGITAL_PORT:
                        ValueDIPort = dblValue;
                        break;

                    case LJUD.IO.GET_COUNTER:
                        ValueCounter = dblValue;
                        break;
                    }
                    try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                        if (e.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                        {
                            finished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }

                Console.Out.WriteLine("AIN0 = {0:0.###}\n", Value0);
                Console.Out.WriteLine("AIN1 = {0:0.###}\n", Value1);
                Console.Out.WriteLine("AIN2 = {0:0.###}\n", Value2);
                Console.Out.WriteLine("FIO1 = {0:0.###}\n", ValueDIBit);
                Console.Out.WriteLine("FIO1-FIO2 = {0:0.###}\n", ValueDIPort);                 //Will read 3 (binary 11) if both lines are pulled-high as normal.
                Console.Out.WriteLine("Counter1 (FIO3) = {0:0.###}\n", ValueCounter);

                Console.Out.WriteLine("\nPress Enter to go again or (q) to quit\n");
                str1          = Console.ReadLine();        // Pause for user
                requestedExit = str1 == "q";
            }
        }