Exemplo n.º 1
0
        /// <summary>
        /// Evaluates the fitness.
        /// </summary>
        private void EvaluateFitness(CCESpecies spec)
        {
            // For each individual we run fitness with a set
            // of best chromosomes, and a random set
            //
            // BestChromosomeList can be used
            // Get random from spec.Population.CurrentGeneration.Chromosomes
            // -- also verify that it is not the same as the best
            //    --- just take any but the first in list (it is ordered)
            //
            //    Use fitness function to get fitness for both sets
            //     Fitness given is best of the two
            try
            {
                CurrentSpec = spec;
                var coll = spec.Offspring;
                if (coll == null)
                {
                    coll = spec.Population.CurrentGeneration.Chromosomes;
                }

                foreach (var individual in coll)
                {
                    if (individual.Fitness.HasValue)
                    {
                        continue;
                    }

                    List <IChromosome> RandomList = new List <IChromosome>();

                    for (int o = 0; o < Species.Count; o++)
                    {
                        if (Object.ReferenceEquals(Species[o], spec))
                        {
                            // this is to keep it in the same order as the species list, always
                            RandomList.Add(individual);
                            continue;
                        }

                        int randIndex;

                        if (Species[o].Population.CurrentGeneration.Chromosomes.Count > 1)
                        {
                            randIndex = RandomizationProvider.Current.GetInt(0, Species[o].Population.CurrentGeneration.Chromosomes.Count - 1);
                        }
                        else
                        {
                            randIndex = 0;
                        }

                        RandomList.Add(Species[o].Population.CurrentGeneration.Chromosomes[randIndex]);
                    }


                    TaskExecutorFit.Add(() =>
                    {
                        RunEvaluateFitness(individual, RandomList);
                    });
                }


                if (!TaskExecutorFit.Start())
                {
                    throw new TimeoutException("The fitness evaluation rech the {0} timeout.".With(TaskExecutorFit.Timeout));
                }
            }
            finally
            {
                TaskExecutorFit.Stop();
                TaskExecutorFit.Clear();
            }
        }
Exemplo n.º 2
0
        /// <summary>
        /// Ends the current generation.
        /// </summary>
        /// <returns><c>true</c>, if current generation was ended, <c>false</c> otherwise.</returns>
        private bool EndCurrentGeneration()
        {
            if (_debugging)
            {
                Console.WriteLine("Starting fitness evaluation");
                timer.Reset();
                timer.Start();
            }


            // Insert multithreading here?



            try
            {
                foreach (var spec in Species)
                {
                    TaskExecutorFitMaster.Add(() => {
                        EvaluateFitness(spec);
                    });
                }
                if (!TaskExecutorFitMaster.Start())
                {
                    throw new TimeoutException("The fitness evaluation rech the {0} timeout.".With(TaskExecutorFitMaster.Timeout));
                }
            }
            finally
            {
                TaskExecutorFitMaster.Stop();
                TaskExecutorFitMaster.Clear();
            }


            if (_debugging)
            {
                Console.WriteLine("Evolved a generation. About to calculate fitness and end it. Time at {0}", timer.Elapsed.ToString());
                timer.Stop();
            }



            if (_debugging)
            {
                Console.WriteLine("Calculating Fitness done. Timer at {0}", timer.Elapsed);
                timer.Stop();
                timer.Reset();
                Console.WriteLine("Starting reinsertion");
                timer.Start();
            }


            foreach (var spec in Species)
            {
                spec.EndCurrentGeneration();
            }

            if (_debugging)
            {
                Console.WriteLine("Reinsertion done. Timer at {0}", timer.Elapsed);
                timer.Stop();
            }

            GenerationsNumber++;

            //update uber best set
            if (UberBestSet == null || UberBestSet.Count == 0)
            {
                UberBestSet = new List <IChromosome> ();
                foreach (IChromosome c in BestChromosomeSet)
                {
                    UberBestSet.Add(c.Clone());
                }
            }
            else
            {
                for (int i = 0; i < BestChromosomeSet.Count; i++)
                {
                    if (UberBestSet [i].Fitness < BestChromosomeSet [i].Fitness)
                    {
                        UberBestSet [i] = BestChromosomeSet [i].Clone();
                    }
                }
            }

            if (GenerationRan != null)
            {
                GenerationRan(this, EventArgs.Empty);
            }

            if (Termination.HasReached(this))
            {
                State = GeneticAlgorithmState.TerminationReached;

                if (TerminationReached != null)
                {
                    TerminationReached(this, EventArgs.Empty);
                }

                return(true);
            }

            if (m_stopRequested)
            {
                TaskExecutorGen.Stop();
                TaskExecutorFit.Stop();
                State = GeneticAlgorithmState.Stopped;
            }

            return(false);
        }