Exemplo n.º 1
0
        private static void dbSQLite()
        {
            // Connect to the database
            var path = Path.GetFullPath("./database.sqlite");
            var db   = new SqliteDb(path);

            db.Connect();

            // Populate a list of iris from the database
            List <Iris> listPredict = new List <Iris>();

            db.Command <Iris>("SELECT * FROM Iris", (iris) =>
            {
                listPredict.Add(iris);
            });

            // Perform the clustering data mining operation based on attribute(s)
            var clusterer = new Clustering <Iris>(5, listPredict);

            clusterer.BuildModel("SepalLengthCm");
            // For each item, predict and output which cluster it's in
            foreach (var item in listPredict)
            {
                // Each item is tested against the test data set
                var result = clusterer.Evaluate(item);
                Console.WriteLine(result.SelectedClusterId);
                Console.WriteLine(string.Join(" ", result.Distance));
            }
        }
Exemplo n.º 2
0
        static void Main(string[] args)
        {
            // Choose the data mining operation from input
            Console.WriteLine("Input BC for binary classification, MC for multiclass classification, or C for clustering");
            var userInput = Console.ReadLine();

            if (userInput == "BC")
            {
                Console.WriteLine("BC selected");
                // Connect to the binary classification DB
                var path = Path.GetFullPath("./binaryclassification.db");
                var db   = new SqliteDb(path);
                db.Connect();

                // Setup a tokenizer, parser, and SQL converter
                var handler     = new FUSQLHandler();
                var query       = handler.ParseQuery("CHECK 'PRETTY GOOD!' FROM imdblabelled\n");
                var translation = Translator.TranslateQuery <Text>(query);
                var result      = translation.RunBinaryClassification(db);

                Console.WriteLine($"Sentiment: {translation.Operation.Text} | Prediction: {(Convert.ToBoolean(result.Prediction) ? "Positive" : "Negative")} | Probability: {result.Probability} ");
                Console.ReadLine();
            }
            else if (userInput == "MC")
            {
                Console.WriteLine("MC selected");
                // Connect to the multiclass classification DB
                var path = Path.GetFullPath("./multiclass.db");
                var db   = new SqliteDb(path);
                db.Connect();

                // Setup a tokenizer, parser, and SQL converter
                var handler     = new FUSQLHandler();
                var query       = handler.ParseQuery("IDENTIFY '404 error not found' 'Cant find webpage!' FROM issuestrain\n");
                var translation = Translator.TranslateQuery <IssueDesc>(query);
                var result      = translation.RunMulticlassClassification(db);

                //var resultView = new MulticlassClassification();
                //resultView.BuildModel();

                //MulticlassClassificationData issue = new MulticlassClassificationData()
                //{
                //    Title = "WebSockets communication is slow in my machine",
                //    Description = "The WebSockets communication used under the covers by SignalR looks like is going slow in my development machine.."
                //};

                Console.WriteLine($"=============== Single Prediction just-trained-model - Result: {result.Area} ===============");

                Console.ReadLine();
            }
            else if (userInput == "C")
            {
                Console.WriteLine("C selected");
                // Connect to the database
                var path = Path.GetFullPath("./database.sqlite");
                var db   = new SqliteDb(path);
                db.Connect();

                // Setup a tokenizer, parser, and SQL converter
                var handler     = new FUSQLHandler();
                var query       = handler.ParseQuery("FIND 5 GROUPS irisClusters USING SepalLengthCm PetalLengthCm FROM Iris\n");
                var translation = Translator.TranslateQuery <Iris>(query);
                var resultView  = translation.RunClustering(db);

                // Perform a data mining query operation
                // dbSQLite();
                foreach (var key in (resultView as ClusterResultView <Iris>).Clusters.Keys)
                {
                    Console.WriteLine("Cluster " + key + " count : " + (resultView as ClusterResultView <Iris>).Clusters[key].Count);
                }
                Console.ReadLine();
            }
            else
            {
                Console.WriteLine("\nInvalid input.");
            }
        }