Exemplo n.º 1
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="TargetMappingIndex"></param>
        /// <param name="outputPartitioning">
        /// Partitioning of the new grid, resp the return array.
        /// </param>
        /// <returns>
        /// - 1st index: cell index in new grid, correlates with <paramref name="outputPartitioning"/>.
        /// - 2nd index: enumeration over cells (in the old grid) which are combined in the new grid.
        ///   For cells with refinement, always one entry, for cells which are coarsened a greater number of entries.
        ///   If null, the cell is not changed.
        /// - content: Subdivision leaf index, correlates with 2nd index of <see cref="KrefS_SubdivLeaves"/>, can be used as an input to <see cref="GetSubdivBasisTransform(int, int, int)"/>.
        /// </returns>
        public int[][] GetTargetMappingIndex(IPartitioning outputPartitioning)
        {
            using (new FuncTrace()) {
                Debug.Assert(DestGlobalId.Length == MappingIndex.Length);
                Debug.Assert(OldGlobalId.Length == MappingIndex.Length);
                int oldJ = DestGlobalId.Length;

                // Caching
                // =======

                if (m_TargetMappingIndex != null)
                {
                    // caching
                    if (m_TargetMappingIndex.Length != outputPartitioning.LocalLength)
                    {
                        throw new ArgumentException("Length mismatch of output list and output partition.");
                    }

                    return(m_TargetMappingIndex);
                }

                // local evaluation, prepare communication
                // =======================================

                m_TargetMappingIndex = new int[outputPartitioning.LocalLength][];

                int j0Dest = outputPartitioning.i0;

                // keys: processors which should receive data from this processor
                Dictionary <int, GetTargetMapping_Helper> AllSendData = new Dictionary <int, GetTargetMapping_Helper>();

                for (int j = 0; j < oldJ; j++)
                {
                    int[] MappingIndex_j = MappingIndex[j];
                    if (MappingIndex_j != null)
                    {
                        Debug.Assert(TargetIdx[j].Length == MappingIndex_j.Length);
                        int L = MappingIndex_j.Length;

                        for (int l = 0; l < L; l++)
                        {
                            int jDest  = TargetIdx[j][l];
                            int MapIdx = MappingIndex_j[l];

                            if (outputPartitioning.IsInLocalRange(jDest))
                            {
                                int[] destCollection = m_TargetMappingIndex[jDest - j0Dest];
                                ArrayTools.AddToArray(MapIdx, ref destCollection);
                                m_TargetMappingIndex[jDest - j0Dest] = destCollection;
                            }
                            else
                            {
                                int targProc = outputPartitioning.FindProcess(jDest);

                                GetTargetMapping_Helper dataTargPrc;
                                if (!AllSendData.TryGetValue(targProc, out dataTargPrc))
                                {
                                    dataTargPrc = new GetTargetMapping_Helper();
                                    AllSendData.Add(targProc, dataTargPrc);
                                }

                                dataTargPrc.TargetIndices.Add(jDest);
                                dataTargPrc.Items.Add(MapIdx);
                            }
                        }
                    }
                    else
                    {
                        Debug.Assert(TargetIdx[j].Length == 1);
                    }
                }

                // communication
                // =============

                var AllRcvData = SerialisationMessenger.ExchangeData(AllSendData, outputPartitioning.MPI_Comm);

                foreach (var kv in AllRcvData)
                {
                    int rcvProc = kv.Key;
                    j0Dest = outputPartitioning.GetI0Offest(rcvProc);

                    var TIdxs = kv.Value.TargetIndices;
                    var TVals = kv.Value.Items;
                    Debug.Assert(TIdxs.Count == TVals.Count);
                    int L = TIdxs.Count;

                    for (int l = 0; l < L; l++)
                    {
                        int idx = TIdxs[l] - j0Dest;
                        Debug.Assert(outputPartitioning.IsInLocalRange(idx));

                        int[] destCollection = m_TargetMappingIndex[idx];
                        ArrayTools.AddToArray(TVals[idx], ref destCollection);
                        m_TargetMappingIndex[idx] = destCollection;
                    }
                }

                // return
                // ======

                return(m_TargetMappingIndex);
            }
        }
Exemplo n.º 2
0
        private static byte[] SyncEdgeTagsOverMPI(Dictionary <string, byte> EdgeTagNames_Reverse)
        {
            csMPI.Raw.Comm_Rank(csMPI.Raw._COMM.WORLD, out int MyRank);

            var To0 = new Dictionary <int, KeyValuePair <string, byte>[]>();

            if (MyRank > 0)
            {
                To0.Add(0, EdgeTagNames_Reverse.ToArray());
            }

            var allData = SerialisationMessenger.ExchangeData(To0);

            bool[] usedEdgeTags = new bool[byte.MaxValue + 1];
            foreach (var et in EdgeTagNames_Reverse.Values)
            {
                usedEdgeTags[et] = true;
            }
            byte GetNewEt()
            {
                for (int i = 1; i < usedEdgeTags.Length; i++)
                {
                    if (i >= GridCommons.FIRST_PERIODIC_BC_TAG)
                    {
                        throw new ApplicationException("Running out of edge tags.");
                    }
                    if (usedEdgeTags[i] == false)
                    {
                        usedEdgeTags[i] = true;
                        return((byte)i);
                    }
                }
                throw new ApplicationException("Running out of edge tags.");
            }

            if (MyRank == 0)
            {
                foreach (var kv in allData)
                {
                    var backData = kv.Value;

                    for (int i = 0; i < backData.Length; i++)
                    {
                        if (EdgeTagNames_Reverse.ContainsKey(backData[i].Key))
                        {
                        }
                        else
                        {
                            byte sugKey = backData[i].Value;
                            if (usedEdgeTags[sugKey])
                            {
                                sugKey = GetNewEt();
                            }

                            EdgeTagNames_Reverse.Add(backData[i].Key, sugKey);
                        }
                    }
                }
            }

            var AllEts = EdgeTagNames_Reverse.ToArray().MPIBroadcast(0);

            byte[] EtTanslations = (byte.MaxValue + 1).ForLoop(i => (byte)i);

            bool AnyTranslation = false;

            if (MyRank > 0)
            {
                foreach (var kv in AllEts)
                {
                    if (EdgeTagNames_Reverse.ContainsKey(kv.Key))
                    {
                        byte oldVal = EdgeTagNames_Reverse[kv.Key];
                        byte newVal = kv.Value;
                        AnyTranslation = AnyTranslation | (oldVal != newVal);
                        EdgeTagNames_Reverse[kv.Key] = newVal;
                        EtTanslations[oldVal]        = newVal;
                    }
                }
            }
            AnyTranslation = AnyTranslation.MPIOr();


            if (AnyTranslation)
            {
                return(EtTanslations);
            }
            else
            {
                return(null);
            }
        }
Exemplo n.º 3
0
        public void ApplyToVector <I>(IList <I> input, IList <I[]> output, IPartitioning outputPartitioning)
        {
            using (new FuncTrace()) {
                Debug.Assert(DestGlobalId.Length == MappingIndex.Length);
                Debug.Assert(OldGlobalId.Length == MappingIndex.Length);
                int oldJ = DestGlobalId.Length;

                if (input.Count != oldJ)
                {
                    throw new ArgumentException("Mismatch between input vector length and current data length.");
                }
                if (output.Count != outputPartitioning.LocalLength)
                {
                    throw new ArgumentException("Length mismatch of output list and output partition.");
                }

                int j0Dest = outputPartitioning.i0;

                // keys: processors which should receive data from this processor
                Dictionary <int, ApplyToVector_Helper <I> > AllSendData = new Dictionary <int, ApplyToVector_Helper <I> >();

                for (int j = 0; j < oldJ; j++)
                {
                    I data_j = input[j];

                    foreach (int jDest in TargetIdx[j])
                    {
                        if (outputPartitioning.IsInLocalRange(jDest))
                        {
                            I[] destCollection = output[jDest - j0Dest];
                            ArrayTools.AddToArray(data_j, ref destCollection);
                            output[jDest - j0Dest] = destCollection;
                        }
                        else
                        {
                            int targProc = outputPartitioning.FindProcess(jDest);

                            ApplyToVector_Helper <I> dataTargPrc;
                            if (!AllSendData.TryGetValue(targProc, out dataTargPrc))
                            {
                                dataTargPrc = new ApplyToVector_Helper <I>();
                                AllSendData.Add(targProc, dataTargPrc);
                            }

                            dataTargPrc.TargetIndices.Add(jDest);
                            dataTargPrc.Items.Add(data_j);
                        }
                    }
                }

                var AllRcvData = SerialisationMessenger.ExchangeData(AllSendData, outputPartitioning.MPI_Comm);

                foreach (var kv in AllRcvData)
                {
                    int rcvProc = kv.Key;
                    j0Dest = outputPartitioning.GetI0Offest(rcvProc);

                    var TIdxs = kv.Value.TargetIndices;
                    var TVals = kv.Value.Items;
                    Debug.Assert(TIdxs.Count == TVals.Count);
                    int L = TIdxs.Count;

                    for (int l = 0; l < L; l++)
                    {
                        int idx = TIdxs[l] - j0Dest;
                        Debug.Assert(outputPartitioning.IsInLocalRange(idx));

                        I[] destCollection = output[idx];
                        ArrayTools.AddToArray(TVals[idx], ref destCollection);
                        output[idx] = destCollection;
                    }
                }
            }
        }
Exemplo n.º 4
0
        /// <summary>
        /// Like <see cref="Evaluate(double, IEnumerable{DGField}, MultidimensionalArray, double, MultidimensionalArray, BitArray, int[])"/>,
        /// but with MPI-Exchange
        /// </summary>
        public int EvaluateParallel(double alpha, IEnumerable <DGField> Flds, MultidimensionalArray Points, double beta, MultidimensionalArray Result, BitArray UnlocatedPoints = null)
        {
            using (new FuncTrace()) {
                MPICollectiveWatchDog.Watch();


                int L       = Points != null ? Points.NoOfRows : 0;
                int MPIsize = m_Context.MpiSize;
                int D       = m_Context.SpatialDimension;

                if (UnlocatedPoints != null)
                {
                    if (UnlocatedPoints.Length != L)
                    {
                        throw new ArgumentException("Length mismatch");
                    }
                }

                // evaluate locally
                // ================
                var unlocated = new System.Collections.BitArray(L);
                int NoOfUnlocated;
                if (L > 0)
                {
                    NoOfUnlocated = this.Evaluate(alpha, Flds, Points, beta, Result, unlocated);
                }
                else
                {
                    NoOfUnlocated = 0;
                }

                // return, if there are no unlocalized points
                // ==========================================

                int TotNoOfUnlocated = NoOfUnlocated.MPISum();
                if (TotNoOfUnlocated <= 0)
                {
                    if (UnlocatedPoints != null)
                    {
                        UnlocatedPoints.SetAll(false);
                    }

                    return(0);
                }

                // copy unlocalized to separate array
                // ==================================
                double[,] localUnlocated = new double[NoOfUnlocated, D]; // MultidimensionalArray does not allow zero length -- so use double[,] instead
                int[] IndexToOrgIndex = new int[NoOfUnlocated];
                int   u = 0;
                for (int i = 0; i < L; i++)
                {
                    if (unlocated[i])
                    {
                        localUnlocated.SetRowPt(u, Points.GetRowPt(i));
                        IndexToOrgIndex[u] = i;
                        u++;
                    }
                }
                Debug.Assert(u == NoOfUnlocated);

                // collect on all ranks -- this won't scale well, but it may work
                // ==============================================================
                MultidimensionalArray globalUnlocated;
                int[] WhoIsInterestedIn; // index: point index, corresponds with 'globalUnlocated' rows; content: rank which needs the result
                int[] OriginalIndex;     // index: detto; content: index which the point had on the processor that sent it.
                double[][,] __globalUnlocated;
                int LL;
                {
                    __globalUnlocated = localUnlocated.MPIAllGatherO();
                    Debug.Assert(__globalUnlocated.Length == MPIsize);
                    Debug.Assert(__globalUnlocated.Select(aa => aa.GetLength(0)).Sum() == TotNoOfUnlocated);
                    Debug.Assert(__globalUnlocated[m_Context.MpiRank].GetLength(0) == NoOfUnlocated);
                    LL = TotNoOfUnlocated - NoOfUnlocated;
                    if (LL > 0)
                    {
                        globalUnlocated = MultidimensionalArray.Create(LL, D);
                    }
                    else
                    {
                        globalUnlocated = null;
                    }
                    WhoIsInterestedIn = new int[LL];
                    OriginalIndex     = new int[LL];
                    int g = 0;
                    for (int r = 0; r < MPIsize; r++)  // concat all point arrays from all processors
                    {
                        if (r == m_Context.MpiRank)
                        {
                            continue;
                        }

                        double[,] __globalPart = __globalUnlocated[r];
                        int Lr = __globalPart.GetLength(0);
                        if (Lr > 0)
                        {
                            globalUnlocated.ExtractSubArrayShallow(new[] { g, 0 }, new[] { g + Lr - 1, D - 1 }).Acc2DArray(1.0, __globalPart);
                        }
                        for (int i = 0; i < Lr; i++)
                        {
                            WhoIsInterestedIn[i + g] = r;
                            OriginalIndex[i + g]     = i;
                        }
                        g += Lr;
                    }
                }

                // try to evaluate the so-far-unlocalized points
                // ---------------------------------------------

                var unlocated2     = new System.Collections.BitArray(LL);
                var Result2        = LL > 0 ? MultidimensionalArray.Create(LL, Flds.Count()) : null;
                int NoOfUnlocated2 = LL > 0 ? this.Evaluate(1.0, Flds, globalUnlocated, 0.0, Result2, unlocated2) : 0;

                // backward MPI sending
                // --------------------
                IDictionary <int, EvaluateParallelHelper> resultFromOtherProcs;
                {
                    var backSend = new Dictionary <int, EvaluateParallelHelper>();
                    for (int ll = 0; ll < LL; ll++)
                    {
                        if (!unlocated2[ll])
                        {
                            int iTarget = WhoIsInterestedIn[ll];
                            Debug.Assert(iTarget != m_Context.MpiRank);
                            if (!backSend.TryGetValue(iTarget, out EvaluateParallelHelper eph))
                            {
                                eph = new EvaluateParallelHelper();
                                backSend.Add(iTarget, eph);
                            }

                            eph.OriginalIndices.Add(OriginalIndex[ll]);
                            eph.Results.Add(Result2.GetRow(ll));
                        }
                    }

                    resultFromOtherProcs = SerialisationMessenger.ExchangeData(backSend);
                }

                // fill the results from other processors
                // ======================================
                foreach (var res in resultFromOtherProcs.Values)
                {
                    int K = res.OriginalIndices.Count();
                    Debug.Assert(res.OriginalIndices.Count == res.Results.Count);

                    for (int k = 0; k < K; k++)
                    {
                        int iOrg = IndexToOrgIndex[res.OriginalIndices[k]];
                        if (unlocated[iOrg] == true)
                        {
                            NoOfUnlocated--;
                        }
                        unlocated[iOrg] = false;

                        Result.AccRow(iOrg, alpha, res.Results[k]);
                    }
                }

                // Return
                // ======
                if (UnlocatedPoints != null)
                {
                    for (int l = 0; l < L; l++)
                    {
                        UnlocatedPoints[l] = unlocated[l];
                    }
                }

                return(NoOfUnlocated);
            }
        }
Exemplo n.º 5
0
        /// <summary>
        /// Computes the neighbor cells globally (i.e. over all MPI processors) for each local cell.
        /// </summary>
        /// <returns>
        /// <param name="IncludeBcCells">
        /// If true, also the boundary condition cells (<see cref="BcCells"/>) will be included in the output array.
        /// </param>
        /// Cell-wise neighborship information:
        /// - index: local cell index <em>j</em>, i.e. correlates with <see cref="Cells"/>; if <paramref name="IncludeBcCells"/> is true,
        ///   the information for boundary cells is added after the information for cells.
        /// - content: for the index <em>j</em> the set of neighbor cells. If the global index (<see cref="Neighbour.Neighbour_GlobalIndex"/>)
        ///   is greater or equal than the global number of cells (<see cref="NumberOfCells"/>) the neighbor is a boundary condition cell,
        ///   (<see cref="BcCells"/>).
        /// </returns>
        public IEnumerable <Neighbour>[] GetCellNeighbourship(bool IncludeBcCells)
        {
            ilPSP.MPICollectiveWatchDog.Watch();
            using (new FuncTrace()) {
                var ftNeigh = GetFaceTagsNeigbourIndices(IncludeBcCells);

                var NPart = this.NodePartitioning;
                int K     = NPart.LocalLength;
                int k0    = NPart.i0;
                int J     = this.NoOfUpdateCells;
                int J_BC  = IncludeBcCells ? this.NoOfBcCells : 0;
                int j0    = this.CellPartitioning.i0;
                int Jglob = this.CellPartitioning.TotalLength;
                int j0Bc  = this.BcCellPartitioning.i0;

                // Which cells make use of a particular node?
                //-------------------------------------------

                // Index: Node index
                // Entry: Enumeration of global indices of cells that use this
                // particular node
                List <int>[] Nodes2Cells = new List <int> [K];
                {
                    for (int k = 0; k < K; k++)
                    {
                        Nodes2Cells[k] = new List <int>();
                    }

                    // key: MPI processor rank
                    // value: information packet
                    Dictionary <int, List <NodeCellIndexPair> > Y =
                        new Dictionary <int, List <NodeCellIndexPair> >();

                    for (int j = 0; j < (J + J_BC); j++)
                    {
                        Element    Cell_j;
                        RefElement Kref;
                        int        jCell_glob;
                        if (j < J)
                        {
                            Cell_j     = this.Cells[j];
                            Kref       = this.m_RefElements.Single(KK => KK.SupportedCellTypes.Contains(Cell_j.Type));
                            jCell_glob = j + j0;
                        }
                        else
                        {
                            Cell_j     = this.BcCells[j - J];
                            Kref       = this.m_EdgeRefElements.Single(KK => KK.SupportedCellTypes.Contains(Cell_j.Type));
                            jCell_glob = (j - J) + j0Bc + Jglob;
                        }
                        var CellNodes = Cell_j.NodeIndices;

                        if (CellNodes.Length != Kref.NoOfVertices)
                        {
                            throw new ApplicationException("error in data structure.");
                        }

                        foreach (int NodeId in CellNodes)
                        {
                            int target_prozi = NPart.FindProcess(NodeId);
                            if (target_prozi == MyRank)
                            {
                                Nodes2Cells[NodeId - k0].Add(jCell_glob);
                            }
                            else
                            {
                                NodeCellIndexPair Packet;
                                Packet.NodeId          = NodeId;
                                Packet.GlobalCellIndex = jCell_glob;

                                List <NodeCellIndexPair> Z;
                                if (!Y.TryGetValue(target_prozi, out Z))
                                {
                                    Z = new List <NodeCellIndexPair>();
                                    Y.Add(target_prozi, Z);
                                }

                                Z.Add(Packet);
                            }
                        }
                    }

                    var W = SerialisationMessenger.ExchangeData(Y, csMPI.Raw._COMM.WORLD);
                    foreach (var wp in W.Values)
                    {
                        foreach (NodeCellIndexPair Packet in wp)
                        {
                            Nodes2Cells[Packet.NodeId - k0].Add(Packet.GlobalCellIndex);
                        }
                    }
                }

                // For every cell, for every vertex in this cell:
                // Which other cells die also use this node?
                //-----------------------------------------------

                // 1st index: Local cell index
                // 2nd index: Cell vertex index
                // 3rd index: Collection of 'peer' cells
                int[][][] NodePeers = new int[J + J_BC][][];
                {
                    for (int j = 0; j < J + J_BC; j++)
                    {
                        Element Cell_j;
                        if (j < J)
                        {
                            Cell_j = this.Cells[j];
                        }
                        else
                        {
                            Cell_j = this.BcCells[j - J];
                        }
                        NodePeers[j] = new int[Cell_j.NodeIndices.Length][];
                    }

                    Dictionary <int, List <NodeCellListPair> > Y = new Dictionary <int, List <NodeCellListPair> >();

                    var CPart  = this.CellPartitioning;
                    var BcPart = this.BcCellPartitioning;
                    for (int k = 0; k < K; k++)   // loop over locally assigned nodes
                    {
                        int k_node = k + k0;

                        var cell_list = Nodes2Cells[k].ToArray();
                        foreach (int jCell in cell_list)   // loop over all cells that use node 'k'
                        {
                            int cell_proc;
                            int local_offset;
                            if (jCell < Jglob)
                            {
                                // normal cell
                                cell_proc    = CPart.FindProcess(jCell);
                                local_offset = j0;
                            }
                            else
                            {
                                // boundary condition cell
                                cell_proc    = BcPart.FindProcess(jCell - Jglob);
                                local_offset = Jglob + j0Bc;
                            }


                            if (cell_proc == MyRank)
                            {
                                int  jCell_loc = jCell - local_offset;
                                int  kC;
                                bool bfound = false;

                                Element Cell_j;
                                int     oo;
                                if (jCell < Jglob)
                                {
                                    // normal cell
                                    Cell_j = this.Cells[jCell_loc];
                                    oo     = 0;
                                }
                                else
                                {
                                    // boundary condition cell
                                    Cell_j = this.BcCells[jCell_loc];
                                    oo     = J;
                                }

                                for (kC = 0; kC < Cell_j.NodeIndices.Length; kC++)
                                {
                                    if (Cell_j.NodeIndices[kC] == k_node)
                                    {
                                        bfound = true;
                                        break;
                                    }
                                }

                                if (!bfound)
                                {
                                    throw new ApplicationException("error in algorithm.");
                                }

                                NodePeers[jCell_loc + oo][kC] = cell_list;
                            }
                            else
                            {
                                NodeCellListPair A;
                                A.NodeId   = k_node;
                                A.CellList = cell_list;

                                List <NodeCellListPair> Z;
                                if (!Y.TryGetValue(cell_proc, out Z))
                                {
                                    Z = new List <NodeCellListPair>();
                                    Y.Add(cell_proc, Z);
                                }

                                Z.Add(A);
                            }
                        }
                    }

                    var W = SerialisationMessenger.ExchangeData(Y, csMPI.Raw._COMM.WORLD);
                    foreach (var wp in W.Values)
                    {
                        foreach (var P in wp)
                        {
                            int   k_node    = P.NodeId;
                            int[] cell_list = P.CellList;

                            foreach (int jCell in cell_list)
                            {
                                int cell_proc;
                                int local_offset;
                                if (jCell < Jglob)
                                {
                                    // normal cell
                                    cell_proc    = CPart.FindProcess(jCell);
                                    local_offset = j0;
                                }
                                else
                                {
                                    // boundary condition cell
                                    cell_proc    = BcPart.FindProcess(jCell - Jglob);
                                    local_offset = Jglob + j0Bc;
                                }

                                if (cell_proc == MyRank)
                                {
                                    int jCell_loc = jCell - local_offset;

                                    Element Cell_j;
                                    int     oo;
                                    if (jCell < Jglob)
                                    {
                                        // normal cell
                                        Cell_j = this.Cells[jCell_loc];
                                        oo     = 0;
                                    }
                                    else
                                    {
                                        // boundary condition cell
                                        Cell_j = this.BcCells[jCell_loc];
                                        oo     = J;
                                    }

                                    int  kC;
                                    bool bfound = false;
                                    for (kC = 0; kC < Cell_j.NodeIndices.Length; kC++)
                                    {
                                        if (Cell_j.NodeIndices[kC] == k_node)
                                        {
                                            bfound = true;
                                            break;
                                        }
                                    }

                                    if (!bfound)
                                    {
                                        throw new ApplicationException("error in algorithm.");
                                    }

                                    NodePeers[jCell_loc + oo][kC] = cell_list;
                                }
                            }
                        }
                    }
                }

                // Assemble final result
                // ---------------------

                IEnumerable <Neighbour>[] CellNeighbours;
                {
                    CellNeighbours = new IEnumerable <Neighbour> [J + J_BC];
                    for (int j = 0; j < J + J_BC; j++)   // loop over cells
                    //var Cell_j = this.Cells[j];
                    //int jCellGlob = j + j0;
                    //var Kref = this.m_GridSimplices.Single(KK => KK.SupportedTypes.Contains(Cell_j.Type));

                    {
                        Element    Cell_j;
                        RefElement Kref;
                        int        jCellGlob;
                        if (j < J)
                        {
                            Cell_j    = this.Cells[j];
                            Kref      = this.m_RefElements.Single(KK => KK.SupportedCellTypes.Contains(Cell_j.Type));
                            jCellGlob = j + j0;
                        }
                        else
                        {
                            Cell_j    = this.BcCells[j - J];
                            Kref      = this.m_EdgeRefElements.Single(KK => KK.SupportedCellTypes.Contains(Cell_j.Type));
                            jCellGlob = (j - J) + j0Bc + Jglob;
                        }

                        var Cell_j_Neighs = new List <Neighbour>();
                        CellNeighbours[j] = Cell_j_Neighs;

                        // find neighbor cells connected via grid nodes
                        // --------------------------------------------

                        if (j < J)
                        {
                            //normal cells: match faces


                            var     faceVtx = Kref.FaceToVertexIndices;
                            int[][] B       = new int[faceVtx.GetLength(1)][];
                            for (int _iface = 0; _iface < Kref.NoOfFaces; _iface++)   // loop over faces of cell 'j' (local index) resp. 'jCellGlob' (global index)
                            {
                                for (int iv = 0; iv < B.Length; iv++)
                                {
                                    B[iv] = NodePeers[j][faceVtx[_iface, iv]];
                                }

                                int NeighIdx = Intersect(B, jCellGlob);
                                if (NeighIdx >= 0)
                                {
                                    Neighbour nCN = default(Neighbour);
                                    nCN.Neighbour_GlobalIndex             = NeighIdx;
                                    nCN.CellFaceTag.FaceIndex             = _iface;
                                    nCN.CellFaceTag.ConformalNeighborship = true;

                                    Cell_j_Neighs.Add(nCN);
                                }
                            }
                        }
                        else
                        {
                            // boundary-condition cell: match the whole element

                            int[][] B = new int[Kref.NoOfVertices][];
                            for (int iv = 0; iv < B.Length; iv++)
                            {
                                B[iv] = NodePeers[j][iv];
                            }

                            int NeighIdx = Intersect(B, jCellGlob);
                            if (NeighIdx >= 0)
                            {
                                Neighbour nCN = default(Neighbour);
                                nCN.Neighbour_GlobalIndex             = NeighIdx;
                                nCN.CellFaceTag.FaceIndex             = -1;
                                nCN.CellFaceTag.ConformalNeighborship = true;

                                Cell_j_Neighs.Add(nCN);
                            }
                        }

                        // find neighbor cells connected via CellFaceTag's
                        // -----------------------------------------------

                        var otherNeighbours = ftNeigh[j]; // ftNeigh is the result of CellFaceTag-based connectivity
                        if (j < J)
                        {
                            var _Cell_j = (Cell)Cell_j;
                            Debug.Assert(((otherNeighbours == null ? 0 : otherNeighbours.Length) == ((_Cell_j.CellFaceTags == null) ? 0 : _Cell_j.CellFaceTags.Length)));
                            if (otherNeighbours != null)
                            {
                                for (int w = 0; w < otherNeighbours.Length; w++)
                                {
                                    Debug.Assert(_Cell_j.CellFaceTags[w].NeighCell_GlobalID < 0 == otherNeighbours[w] < 0);
                                    if (_Cell_j.CellFaceTags[w].NeighCell_GlobalID >= 0)
                                    {
                                        if (Cell_j_Neighs.Where(neigh => neigh.Neighbour_GlobalIndex == otherNeighbours[w]).Count() <= 0)   // filter duplicates
                                        {
                                            Cell_j_Neighs.Add(new Neighbour()
                                            {
                                                Neighbour_GlobalIndex = otherNeighbours[w],
                                                CellFaceTag           = _Cell_j.CellFaceTags[w],
                                            });
                                        }
                                    }
                                }
                            }
                        }
                        else
                        {
                            var BcCell_j = (BCElement)Cell_j;
                            Debug.Assert(((otherNeighbours == null ? 0 : otherNeighbours.Length) == ((BcCell_j.NeighCell_GlobalIDs == null) ? 0 : BcCell_j.NeighCell_GlobalIDs.Length)));

                            if (otherNeighbours != null)
                            {
                                for (int w = 0; w < otherNeighbours.Length; w++)
                                {
                                    Cell_j_Neighs.Add(new Neighbour()
                                    {
                                        Neighbour_GlobalIndex = otherNeighbours[w],
                                        CellFaceTag           = new CellFaceTag()
                                        {
                                            EdgeTag               = BcCell_j.EdgeTag,
                                            FaceIndex             = int.MinValue,
                                            NeighCell_GlobalID    = BcCell_j.NeighCell_GlobalIDs[w],
                                            ConformalNeighborship = BcCell_j.Conformal
                                        }
                                    });
                                }
                            }
                        }
                    }
                }

                return(CellNeighbours);
            }
        }
Exemplo n.º 6
0
            /// <summary>
            /// ctor.
            /// </summary>
            /// <param name="M"></param>
            /// <param name="ExtCol">
            /// key: processor rank 'p' <br/>
            /// value: a list of column indices (within the local range of columns of <paramref name="M"/>),
            /// which should be editable at rank 'p'.
            /// </param>
            public MsrExtMatrix(IMutableMatrixEx M, IDictionary <int, int[]> ExtCol)
            {
                this.ColPart = M.ColPartition;
                int i0Row = (int)M.RowPartitioning.i0, I = M.RowPartitioning.LocalLength,
                    i0Col = (int)this.ColPart.i0, J = this.ColPart.LocalLength;

                Mtx = M;


                // init
                // ====
                ColToRowLocal = new List <int> [ColPart.LocalLength];
                for (int j = 0; j < ColToRowLocal.Length; j++)
                {
                    ColToRowLocal[j] = new List <int>();
                }

                // build Column to row - mapping
                // =============================
                ColToRowExternal = new Dictionary <int, List <int> >();
                // key: global column index j, within the range of processor 'p'
                // values: global row indices


                SortedDictionary <int, List <int> > ColForProc = new SortedDictionary <int, List <int> >();

                // key: MPI processor index 'p'
                // values: a set of global column indices, within the range of processor 'p',
                //         that contain nonzero entries on this processor

                int[] col = null;
                int   L;

                // loop over all rows...
                for (int i = 0; i < I; i++)
                {
                    L = M.GetOccupiedColumnIndices(i + i0Row, ref col);

                    // loop over all nonzero entries in the row...
                    for (int l = 0; l < L; l++)
                    {
                        int ColIndex = col[l];

                        int localColInd = ColIndex - i0Col;
                        if (localColInd >= 0 && localColInd < J)
                        {
                            // column of 'entry' is within the local range of this processor
                            // + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                            ColToRowLocal[localColInd].Add(i + i0Row);
                        }
                        else
                        {
                            // column of 'entry' belongs to external processor 'proc'
                            // + + + + + + + + + + + + + + + + + + + + + + + + + + + +

                            int proc = this.ColPart.FindProcess(ColIndex);

                            {
                                //SortedDictionary<int, List<int>> ColToRowExt_proc;
                                //if (!ColToRowExternal.ContainsKey(proc)) {
                                //    ColToRowExt_proc = new SortedDictionary<int, List<int>>();
                                //    ColToRowExternal.Add(proc, ColToRowExt_proc);
                                //} else {
                                //    ColToRowExt_proc = ColToRowExternal[proc];
                                //}

                                int j = ColIndex;

                                List <int> Rows4Col;
                                if (!ColToRowExternal.ContainsKey(j))
                                {
                                    Rows4Col = new List <int>();
                                    ColToRowExternal.Add(j, Rows4Col);
                                }
                                else
                                {
                                    Rows4Col = ColToRowExternal[j];
                                }

                                Rows4Col.Add(i + i0Row);
                            }

                            {
                                List <int> ColForProc_proc;
                                if (!ColForProc.ContainsKey(proc))
                                {
                                    ColForProc_proc = new List <int>();
                                    ColForProc.Add(proc, ColForProc_proc);
                                }
                                else
                                {
                                    ColForProc_proc = ColForProc[proc];
                                }

                                if (!ColForProc_proc.Contains(ColIndex))
                                {
                                    ColForProc_proc.Add(ColIndex);
                                }
                            }
                        }
                    }
                }

                // communicate
                // ===========

                //SerialisationMessenger sms = new SerialisationMessenger(csMPI.Raw.MPI_COMM_WORLD);
                //{
                //    foreach (int proc in ColToRowExternal.Keys) {
                //        sms.SetCommPath(proc);
                //    }
                //    sms.CommitCommPaths();

                //    // send
                //    foreach (int proc in ColToRowExternal.Keys) {
                //        SortedDictionary<int, List<int>> ColToRowExt_proc = ColToRowExternal[proc];
                //        SortedList _ColToRowExt_proc = new SortedList();
                //        foreach (int iCol in ColToRowExt_proc.Keys)
                //            _ColToRowExt_proc.Add(iCol, ColToRowExt_proc[iCol].ToArray());
                //    }

                //    // receive
                //    int p; SortedList rcv;
                //    sms.GetNext(out p, out rcv);
                //    while (rcv != null) {

                //        foreach (int col in rcv.Keys) {
                //            int[] rowList = (int[])rcv[col];
                //            ColToRowLocal[col].AddRange(rowList);
                //        }

                //        sms.GetNext(out p, out rcv);
                //    }
                //}

                //sms.Dispose();

                // build 'ColProcessors'
                // =====================

                //ColProcessors = new List<int>[ColToRowLocal.Length];

                //for (int j = 0; j < ColToRowLocal.Length; j++) {
                //    List<int> mpiRank = null;
                //    foreach (int rowind in ColToRowLocal[j]) {
                //        int riloc = rowind - i0Row;

                //        if (riloc < 0 || riloc >= I) {
                //            if (mpiRank == null)
                //                mpiRank = new List<int>();
                //            mpiRank.Add(M.RowPartiton.FindProcess(rowind));
                //        }

                //        ColProcessors[j] = mpiRank;
                //    }
                //}

                // communicate: build 'ColProcessors'
                // ==================================
                {
                    ColProcessors = new List <int> [ColPart.LocalLength];

                    SerialisationMessenger sms = new SerialisationMessenger(csMPI.Raw._COMM.WORLD);

                    sms.SetCommPathsAndCommit(ColForProc.Keys);

                    foreach (int proc in ColForProc.Keys)
                    {
                        sms.Transmit(proc, ColForProc[proc].ToArray());
                    }

                    int i0Loc = (int)ColPart.i0;

                    int rcvproc; int[] ColIndices;
                    while (sms.GetNext(out rcvproc, out ColIndices))
                    {
                        int Rank;
                        {
                            csMPI.Raw.Comm_Rank(csMPI.Raw._COMM.WORLD, out Rank);
                            //Console.WriteLine("P# " + Rank + ": receiving from P# " + rcvproc);
                        }

                        foreach (int ColInd in ColIndices)
                        {
                            int localColInd = ColInd - i0Loc;
                            if (localColInd < 0 || localColInd >= ColPart.LocalLength)
                            {
                                throw new IndexOutOfRangeException("internal error");
                            }


                            if (ColProcessors[localColInd] == null)
                            {
                                ColProcessors[localColInd] = new List <int>();
                            }

                            if (ColProcessors[localColInd].Contains(rcvproc))
                            {
                                throw new ApplicationException("internal error.");
                            }
                            ColProcessors[localColInd].Add(rcvproc);
                        }
                    }

                    sms.Dispose();
                }

                if (ExtCol != null)
                {
                    var send   = new Dictionary <int, List <Tuple <int, List <int> > > >();
                    int myRank = M.RowPartitioning.MpiRank;

                    foreach (var kv in ExtCol)
                    {
                        int   rank   = kv.Key;
                        int[] ColIdx = kv.Value;

                        var sendToRank = new List <Tuple <int, List <int> > >();

                        foreach (int iCol in ColIdx)
                        {
                            List <int> c2p = ColProcessors[iCol - i0Col];
                            var        t   = new Tuple <int, List <int> >(iCol, c2p != null ? new List <int>(c2p) : new List <int>());
                            t.Item2.Add(myRank);
                            sendToRank.Add(t);
                        }

                        send.Add(rank, sendToRank);
                    }

                    var receive = SerialisationMessenger.ExchangeData(send, csMPI.Raw._COMM.WORLD);

                    ColProcessorsExternal = new Dictionary <int, List <int> >();
                    foreach (var kv in receive)
                    {
                        var val = kv.Value;

                        foreach (var t in val)
                        {
                            int        iCol    = t.Item1;
                            List <int> ranks   = t.Item2;
                            int        iMyRank = ranks.IndexOf(myRank);
                            if (iMyRank >= 0)
                            {
                                ranks.RemoveAt(iMyRank);
                            }

                            ColProcessorsExternal.Add(t.Item1, t.Item2);

                            Debug.Assert(this.ColPart.FindProcess(t.Item1) == kv.Key);
                        }
                    }

#if DEBUG
                    foreach (var procList in ColProcessorsExternal.Values)
                    {
                        Debug.Assert(procList.Contains(myRank) == false);
                    }
#endif
                }
            }
Exemplo n.º 7
0
        /// <summary>
        /// Resorts a vector according to this permutation, i.e. the
        /// <em>j</em>-th item of the input vector is copied to the
        /// <see cref="Values"/>[j]-th entry of the output vector.
        /// </summary>
        /// <param name="input">
        /// Input vector, length must be equal to the length of this permutation, unchanged on exit.
        /// </param>
        /// <param name="output">
        /// On exit, <paramref name="output"/>[<see cref="Values"/>[j]] = <paramref name="input"/>[j]
        /// </param>
        public void ApplyToVector <I>(IList <I> input, IList <I> output, IPartitioning outputPartitioning)
        {
            using (new FuncTrace()) {
                if (input.Count != this.LocalLength)
                {
                    throw new ArgumentException("wrong size of input vector.");
                }
                if (output.Count != outputPartitioning.LocalLength)
                {
                    throw new ArgumentException("wrong size of output vector.");
                }

                long[] TargetInd = this.Values;
                // keys: processors which should receive data from this processor
                Dictionary <int, ApplyToVector_Helper <I> > sendData =
                    new Dictionary <int, ApplyToVector_Helper <I> >();

                int out_myI0   = outputPartitioning.i0;
                int out_nextI0 = out_myI0 + outputPartitioning.LocalLength;
                int J          = this.Partitioning.LocalLength;

                for (int j = 0; j < J; j++)
                {
                    if (out_myI0 <= TargetInd[j] && TargetInd[j] < out_nextI0)
                    {
                        // target index located on this processor
                        output[(int)(TargetInd[j] - out_myI0)] = input[j];
                    }
                    else
                    {
                        // target index located on other processor

                        int TargProc = outputPartitioning.FindProcess(TargetInd[j]);

                        ApplyToVector_Helper <I> sendData_TargProc = null;
                        if (!sendData.TryGetValue(TargProc, out sendData_TargProc))
                        {
                            sendData_TargProc = new ApplyToVector_Helper <I>();
                            sendData.Add(TargProc, sendData_TargProc);
                        }

                        sendData_TargProc.Items.Add(input[j]);
                        sendData_TargProc.TargetIndices.Add(TargetInd[j]);
                    }
                }

                var rcvData = SerialisationMessenger.ExchangeData(
                    sendData, MPI.Wrappers.csMPI.Raw._COMM.WORLD);

                foreach (var rcvPkt in rcvData.Values)
                {
                    int K = rcvPkt.Items.Count;
                    Debug.Assert(rcvPkt.Items.Count == rcvPkt.TargetIndices.Count);

                    for (int k = 0; k < K; k++)
                    {
                        int locIdx = (int)(rcvPkt.TargetIndices[k]) - out_myI0;
                        output[locIdx] = rcvPkt.Items[k];
                    }
                }
            }
        }