Exemplo n.º 1
0
        public override SAFuzzySystem TuneUpFuzzySystem(SAFuzzySystem Classifier, ILearnAlgorithmConf conf)
        {
            Init(conf);
            KnowlegeBaseSARules temp_c_Rule = new KnowlegeBaseSARules(Classifier.RulesDatabaseSet[0]);
            SAFuzzySystem       result      = Classifier;

            for (int t = 0; t < population_count; t++)
            {
                monkey[t] = new KnowlegeBaseSARules(result.RulesDatabaseSet[0]);
                for (int k = 0; k < result.RulesDatabaseSet[0].TermsSet.Count; k++)
                {
                    for (int q = 0; q < result.RulesDatabaseSet[0].TermsSet[k].CountParams; q++)
                    {
                        //monkey[t].TermsSet[k].Parametrs[q] = StaticRandom.NextDouble() * (result.RulesDatabaseSet[0].TermsSet[k].Max - result.RulesDatabaseSet[0].TermsSet[k].Min);
                        monkey[t].TermsSet[k].Parametrs[q] = GaussRandom.Random_gaussian(rand, monkey[t].TermsSet[k].Parametrs[q], monkey[t].TermsSet[k].Parametrs[q] * 0.05);
                    }
                }

                result.UnlaidProtectionFix(monkey[t]);

                // delete
                testvals[t] = result.ErrorLearnSamples(monkey[t]);
                Console.WriteLine("Begin: " + t.ToString() + " " + iter.ToString() + " " + testvals[t].ToString());
            }
            bestsolution       = new KnowlegeBaseSARules(monkey.SelectBest(result, 1)[0]);
            bestsolutionnumber = result.ErrorLearnSamples(bestsolution);

            iter_amount = somersault_iter * (1 + jump_iter * (1 + crawl_iter));
            deltaLength = result.RulesDatabaseSet[0].TermsSet.Sum(x => x.Parametrs.Length);
            for (int r = 0; r < somersault_iter; r++)
            {
                for (int t = 0; t < jump_iter; t++)
                {
                    for (int e = 0; e < crawl_iter; e++)
                    {
                        iter++;
                        CheckForBest(result);
                        oneClimb(result, deltaLength, step);
                        //Console.WriteLine(iter_amount.ToString() + "/" + iter.ToString());
                    }
                    iter++;
                    oneWatchJump(result);
                    //Console.WriteLine(iter_amount.ToString() + "/" + iter.ToString());
                }
                iter++;
                oneGlobalJump(result);
                Console.WriteLine(iter_amount.ToString() + "/" + iter.ToString());
            }

            /*  for (int t = 0; t < population_count; t++)
             *    if (result.ErrorLearnSamples(monkey[best]) < result.ErrorLearnSamples(monkey[t]))
             *        best = t; */
            CheckForBest(result);
            if (bestsolutionnumber < result.ErrorLearnSamples(result.RulesDatabaseSet[0]))
            {
                result.RulesDatabaseSet[0] = bestsolution;
            }
            iter = 0;
            return(result);
        }
Exemplo n.º 2
0
        // дописываю
        public static int sign(KnowlegeBaseSARules monkeysum, KnowlegeBaseSARules monkeysub, double num, SAFuzzySystem result)
        {
            double f1 = ((result.ErrorLearnSamples(monkeysum) - result.ErrorLearnSamples(monkeysub))) / 2 * num;

            if (f1 < 0)
            {
                return(1);
            }
            else
            {
                return(-1);
            }
        }
Exemplo n.º 3
0
 public virtual void oneWatchJump(SAFuzzySystem result)
 {
     for (int j = 0; j < population_count; j++)
     {
         WJVector_gen(j);
         if (result.ErrorLearnSamples(WJVector) <= result.ErrorLearnSamples(monkey[j]))
         {
             monkey[j] = WJVector;
             // delete
             double testval = result.ErrorLearnSamples(monkey[j]);
             Console.WriteLine(j.ToString() + " " + iter.ToString() + " " + testval.ToString() + " - Success at WatchJump");
         }
     }
 }
Exemplo n.º 4
0
 public virtual void oneGlobalJump(SAFuzzySystem result)
 {
     for (int j = 0; j < population_count; j++)
     {
         SSVector_gen();
         IndividualSSVector = new KnowlegeBaseSARules(monkey[j]);
         for (int k = 0; k < monkey[j].TermsSet.Count; k++)
         {
             for (int q = 0; q < monkey[j].TermsSet[k].CountParams; q++)
             {
                 IndividualSSVector.TermsSet[k].Parametrs[q] += (somersault_interval_left + (somersault_interval_right - somersault_interval_left) * StaticRandom.NextDouble()) * (SSVector.TermsSet[k].Parametrs[q] - monkey[j].TermsSet[k].Parametrs[q]);
             }
         }
         if (result.ErrorLearnSamples(IndividualSSVector) <= result.ErrorLearnSamples(monkey[j]))
         {
             monkey[j] = IndividualSSVector;
             // delete
             double testval = result.ErrorLearnSamples(monkey[j]);
             Console.WriteLine(j.ToString() + " " + iter.ToString() + " " + testval.ToString() + " - Success at Global Jump");
         }
     }
 }
Exemplo n.º 5
0
        public virtual void CheckForBest(SAFuzzySystem result)
        {
            KnowlegeBaseSARules temp = monkey.SelectBest(result, 1)[0];
            double tempnumber        = result.ErrorLearnSamples(temp);

            if (bestsolutionnumber > tempnumber)
            {
                bestsolution       = new KnowlegeBaseSARules(temp);
                bestsolutionnumber = tempnumber;
                // delete
                // Console.WriteLine("NEWBEST " + bestsolutionnumber);
            }
        }
Exemplo n.º 6
0
        public override SAFuzzySystem TuneUpFuzzySystem(SAFuzzySystem Approximate, ILearnAlgorithmConf conf) // + override
        {
            result = Approximate;


            List <KnowlegeBaseSARules> Archive = new List <KnowlegeBaseSARules>();
            List <double> ErrorsArchive        = new List <double>();

            var config = (DynamicTuneConf)conf;

            maxError  = config.MaxError;
            RuleCount = config.RulesCount;
            TryCount  = config.TryCount;
            double error        = result.RMSEtoMSEdiv2forLearn(result.approxLearnSamples(result.RulesDatabaseSet[0]));
            var    kbToOptimize = new KnowlegeBaseSARules(result.RulesDatabaseSet[0]);
            var    kbBest       = new KnowlegeBaseSARules(kbToOptimize);
            double errorBefore  = Double.MaxValue;

            result.UnlaidProtectionFix(kbToOptimize);

            List <input_space> variable_spaces = new List <input_space>();

            for (int i = 0; i < result.LearnSamplesSet.InputAttributes.Count; i++)
            {
                List <Term> terms_of_variable = new List <Term>();
                terms_of_variable = kbToOptimize.TermsSet.Where(term => term.NumVar == i).ToList();
                variable_spaces.Add(new input_space(terms_of_variable, i));
            }

            int indexRegion = -1,
                indexVar    = -1,
                number_of_input_variables = variable_spaces.Count;

            int tryCount = 0;



            while (error > maxError)
            {
                if (Double.IsInfinity(error))
                {
                    throw new Exception("Something went wrong, error is Infinity, region: " + indexRegion);
                }
                if (Double.IsNaN(error))
                {
                    throw new Exception("Something went wrong, error is NaN, region: " + indexRegion);
                }

                region_side[][] sides = new region_side[number_of_input_variables][];
                for (int i = 0; i < number_of_input_variables; i++)
                {
                    sides[i] = variable_spaces[i].get_region_sides();
                }
                var cartresult = CartesianProduct.Get(sides);

                List <region2> regions = new List <region2>();

                foreach (var x in cartresult)
                {
                    regions.Add(new region2(x.ToList(), result, variable_spaces));
                }

                List <double> region_errors = regions.Select(x => x.region_error()).ToList();
                indexRegion = region_errors.IndexOf(region_errors.Max());

                for (int i = 0; i < region_errors.Count; i++)
                {
                    if (Double.IsNaN(region_errors[i]) || Double.IsInfinity(region_errors[i]) ||
                        Double.IsNegativeInfinity(region_errors[i]) || Double.IsPositiveInfinity(region_errors[i]))
                    {
                        region_errors[i] = 0;
                    }
                }

                List <double> variable_errors = regions[indexRegion].variable_errors();
                bool          check1          = false;
                for (int i = 1; i < variable_errors.Count; i++)
                {
                    if (variable_errors[i - 1] != variable_errors[i])
                    {
                        check1 = true;
                        break;
                    }
                }
                if (!check1)
                {
                    indexVar = StaticRandom.Next(variable_errors.Count - 1);
                }
                else
                {
                    indexVar = variable_errors.IndexOf(variable_errors.Max());
                }

                Term new_term = regions[indexRegion].new_term(indexVar);
                result.RulesDatabaseSet[0] = kbToOptimize;
                kbToOptimize.TermsSet.Add(new_term);

                // Rules (CHECK REFERENCE TYPES)
                int @var = indexVar;

                var rulesLeft = kbToOptimize.RulesDatabase.Where(
                    rule => rule.ListTermsInRule.Contains(regions[indexRegion].sides[indexVar].left)).ToList();
                var rulesRight = kbToOptimize.RulesDatabase.Where(
                    rule => rule.ListTermsInRule.Contains(regions[indexRegion].sides[indexVar].right)).ToList();
                for (int j = 0; j < rulesLeft.Count; j++)
                {
                    int[] order = new int[rulesLeft[j].ListTermsInRule.Count];
                    for (int k = 0; k < rulesLeft[j].ListTermsInRule.Count; k++)
                    {
                        Term temp_term = rulesLeft[j].ListTermsInRule[k];
                        if (temp_term == regions[indexRegion].sides[indexVar].left)
                        {
                            temp_term = new_term;
                        }
                        order[k] = kbToOptimize.TermsSet.FindIndex(x => x == temp_term);
                    }
///!!!!
                    double temp_approx_Values = kbToOptimize.RulesDatabase[j].IndependentConstantConsequent;

                    /*        double[] temp_approx_RegressionConstantConsequent =
                     *          kbToOptimize.RulesDatabase[j].RegressionConstantConsequent.Clone() as double[];
                     */


                    SARule temp_rule = new SARule(
                        kbToOptimize.TermsSet, order, temp_approx_Values);

                    // double[] dC = null;
//!!!
                    temp_rule.IndependentConstantConsequent = KNNConsequent.NearestApprox(result, temp_rule.ListTermsInRule.ToList());



                    kbToOptimize.RulesDatabase.Add(temp_rule);


//!!!
                    rulesLeft[j].IndependentConstantConsequent = KNNConsequent.NearestApprox(result, rulesLeft[j].ListTermsInRule.ToList());
                    //           rulesLeft[j].RegressionConstantConsequent = (double[])dC.Clone();
                }

                foreach (var rule in rulesRight)
                {
//!!!

                    rule.IndependentConstantConsequent = KNNConsequent.NearestApprox(
                        result, rule.ListTermsInRule.ToList());
                    //               rule.RegressionConstantConsequent = dC;
                }

                variable_spaces[indexVar].terms.Add(new_term);
                variable_spaces[indexVar].terms.Sort(new CompararerByPick());

                // Re-evaluate the system's error
                error = result.RMSEtoMSEdiv2forLearn(result.ErrorLearnSamples(kbToOptimize));

                if ((kbToOptimize.RulesDatabase.Count > config.RulesCount))
                {
                    break;
                }

#if Console
                Console.WriteLine(error + " " + kbToOptimize.TermsSet.Count + " terms\n");
                for (int i = 0; i < variable_spaces.Count; i++)
                {
                    Console.WriteLine(variable_spaces[i].terms.Count + " термов по " + i + "му параметру\n");
                }
#endif
                result.RulesDatabaseSet[0] = kbToOptimize;
                // Get the best knowledge base on the 1st place
                if (error < errorBefore)
                {
                    kbBest      = new KnowlegeBaseSARules(kbToOptimize);
                    errorBefore = error;
                    tryCount    = 0;
                }
                else
                {
                    tryCount++;
                }
                if (tryCount > TryCount)
                {
                    break;
                }
            }


            result.RulesDatabaseSet[0] = kbBest;
            RuleCount = kbBest.RulesDatabase.Count;
            TryCount  = tryCount;

            return(result);
        }
Exemplo n.º 7
0
        public virtual void oneClimb(SAFuzzySystem result, int length, double st)
        {
            int    i;
            double step = GaussRandom.Random_gaussian(rand, st, st * 0.05);
            KnowlegeBaseSARules temp;

            double[] delta = new double[length];
            bool     sign_f;
            int      sign_num;

            for (int j = 0; j < population_count; j++)
            {
                i = 0;
                if (j % 4 < 2)
                {
                    delta = ClimbVector(length, step);
                }
                else
                {
                    delta = ClimbVectorR(length, step);
                }
                monkeysum = new KnowlegeBaseSARules(monkey[j]);
                monkeysub = new KnowlegeBaseSARules(monkey[j]);
                temp      = new KnowlegeBaseSARules(monkey[j]);
                for (int k = 0; k < result.RulesDatabaseSet[0].TermsSet.Count; k++)
                {
                    for (int q = 0; q < result.RulesDatabaseSet[0].TermsSet[k].CountParams; q++, i++)
                    {
                        monkeysum.TermsSet[k].Parametrs[q] += delta[i];
                        monkeysub.TermsSet[k].Parametrs[q] -= delta[i];
                    }
                }
                if (result.ErrorLearnSamples(monkeysum) < result.ErrorLearnSamples(monkeysub))
                {
                    sign_num = 1;
                }
                else
                {
                    sign_num = -1;
                }
                i = 0;
                if (j % 2 == 0)
                {
                    for (int k = 0; k < result.RulesDatabaseSet[0].TermsSet.Count; k++)
                    {
                        for (int q = 0; q < result.RulesDatabaseSet[0].TermsSet[k].CountParams; q++, i++)
                        {
                            // old
                            //temp.TermsSet[k].Parametrs[q] = monkey[j].TermsSet[k].Parametrs[q] + step * sign(monkeysum, monkeysub, delta[i], result);

                            // Двойной шаг
                            // temp.TermsSet[k].Parametrs[q] = monkey[j].TermsSet[k].Parametrs[q] + step * sign_num * delta[i];

                            temp.TermsSet[k].Parametrs[q] = monkey[j].TermsSet[k].Parametrs[q] + sign_num * delta[i];
                        }
                    }
                }
                // Идея ГИВ
                else
                {
                    sign_f = (result.ErrorLearnSamples(monkeysum) < result.ErrorLearnSamples(monkeysub));
                    if (sign_f)
                    {
                        temp = monkeysum;
                    }
                    else
                    {
                        temp = monkeysub;
                    }
                }

                //if ((result.ErrorLearnSamples(temp) < result.ErrorLearnSamples(monkey[j])))
                monkey[j] = temp;
                //delete
                double testval = result.ErrorLearnSamples(monkey[j]);
                if (testval < testvals[j])
                {
                    Console.WriteLine(j.ToString() + " " + iter.ToString() + " " + testval.ToString() + " - Climb");
                    testvals[j] = testval;
                }
            }
        }
Exemplo n.º 8
0
        //основные вычисления
        public override SAFuzzySystem TuneUpFuzzySystem(SAFuzzySystem Approx, ILearnAlgorithmConf conf)
        {
            result = Approx;
            Init(conf);
            SetPopulation();
            KnowlegeBaseSARules BEST = new KnowlegeBaseSARules(result.RulesDatabaseSet[0]);
            double bestError         = result.ErrorLearnSamples(BEST);

            //отчистка консоли

#if debug
            Console.Clear();
#endif
            //запуск итераций
            for (int it = 0; it < iter; it++)
            {
#if debug
                //вывод номера итерации
                Console.Write("Итерация __№__ = ");
                Console.WriteLine(it);
#endif
                //расчитыавем значение фитнес-функции
                Population = ListSingletonApproximateTool.SortRules(Population, result);
                double[] K = new double[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    K[i] = result.ErrorLearnSamples(Population[i]);
#if debug
                    Console.Write("Значние  K[i1] = ");
                    Console.WriteLine(K[i]);
#endif
                    if (double.IsNaN(K[i]) || double.IsInfinity(K[i]))
                    {
                        result.UnlaidProtectionFix(Population[i]);
                        K[i] = result.ErrorLearnSamples(Population[i]);

#if debug
                        Console.Write("Значние  K[i2] = ");
                        Console.WriteLine(K[i]);
#endif
                    }
                }
                Kworst = K.Max();
                if (double.IsNaN(Kworst) || double.IsInfinity(Kworst))
                {
                    int iworst = K.ToList().IndexOf(Kworst);
 #if debug
                    Console.Write("Значние iworst = ");
                    Console.WriteLine(iworst);
#endif
                }

#if debug
                //вывод Kworst
                Console.Write("Значние KWorst = ");
                Console.WriteLine(Kworst);
#endif
                Kbest = K.Min();
#if debug
                //вывод Kbest
                Console.Write("Значние Kbest = ");
                Console.WriteLine(Kbest);
#endif
                int ibest = K.ToList().IndexOf(Kbest);
#if debug
                //вывод ibest
                Console.Write("Значние ibest = ");
                Console.WriteLine(ibest);
#endif
                //перебрать значения фитнес функции
                //расчитыавем значение D
                double dit;
                dit = it;
                double diter;
                diter = iter;

                double D = (dmax * (rand.NextDouble() * 2 - 1) * (dit / diter));

                //расчитываем значение rand1 для D
                double rand1;
                rand1 = D / (dmax * (it) / iter);
#if debug
                //выводим значение rand1 для D
                Console.Write("Значение Drand = ");
                Console.WriteLine(rand1);

                //выводим значение D
                Console.Write("Значение __D__ = ");
                Console.WriteLine(D);
#endif
                //расчитыавем значение Xfood
                double divide = K.Select(x => 1 / x).ToList().Sum();
                var    Xfood  = new KnowlegeBaseSARules(Population[0]);
                for (int t = 0; t < Xfood.TermsSet.Count; t++)
                {
                    for (int p = 0; p < Xfood.TermsSet[t].CountParams; p++)
                    {
                        Xfood.TermsSet[t].Parametrs[p] = 0;

                        for (int i = 0; i < Population.Length; i++)
                        {
                            Xfood.TermsSet[t].Parametrs[p] += Population[i].TermsSet[t].Parametrs[p] / K[i];
#if debug
                            //выводим значение Xfood
                            Console.Write("Значение Xfood = ");
                            Console.WriteLine(Xfood.TermsSet[t].Parametrs[p]);
#endif
                        }
                        Xfood.TermsSet[t].Parametrs[p] /= divide;
                    }
                }
#if debug
                //вывод divide
                Console.Write("Значние divide = ");
                Console.WriteLine(divide);
#endif
                //расчитываем значение Kfood
                double Kfood = result.ErrorLearnSamples(Xfood);
                if (double.IsNaN(Kfood) || double.IsInfinity(Kfood))
                {
                    result.UnlaidProtectionFix(Xfood);
                    Kfood = result.ErrorLearnSamples(Xfood);
                }
#if debug
                //выводим значение Kfood
                Console.Write("Значение Kfood = ");
                Console.WriteLine(Kfood);
#endif
                //расчитываем значение Cfood
                double Cfood = 2 * (1 - (dit / diter));
#if debug
                //выводим значение Cfood
                Console.Write("Значение Cfood = ");
                Console.WriteLine(Cfood);
#endif
                //расчитываем значение Bfood
                KnowlegeBaseSARules[] Bfood = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    Bfood[i] = new KnowlegeBaseSARules(Population[i]);
                    double KRoofifood = CalcKroof(K[i], Kfood);
                    KnowlegeBaseSARules Xroofifood = new KnowlegeBaseSARules(CalcXroof(Population[i], Xfood));
                    for (int t = 0; t < Bfood[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < Bfood[i].TermsSet[t].CountParams; p++)
                        {
                            Bfood[i].TermsSet[t].Parametrs[p] = Cfood * KRoofifood * Xroofifood.TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение Bfood
                            Console.Write("Значение Bfood = ");
                            Console.WriteLine(Bfood[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение Bbest
                KnowlegeBaseSARules[] Bbest = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    Bbest[i] = new KnowlegeBaseSARules(Population[i]);
                    double KRoofifood = CalcKroof(K[i], K[ibest]);
                    KnowlegeBaseSARules Xroofifood = new KnowlegeBaseSARules(CalcXroof(Population[i], Population[ibest]));
                    for (int t = 0; t < Bbest[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < Bbest[i].TermsSet[t].CountParams; p++)
                        {
                            Bbest[i].TermsSet[t].Parametrs[p] = KRoofifood * Xroofifood.TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение Bbest
                            Console.Write("Значение Bbest = ");
                            Console.WriteLine(Bbest[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение B
                KnowlegeBaseSARules[] B = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    B[i] = new KnowlegeBaseSARules(Population[i]);
                    for (int t = 0; t < B[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < B[i].TermsSet[t].CountParams; p++)
                        {
                            B[i].TermsSet[t].Parametrs[p] = Bfood[i].TermsSet[t].Parametrs[p] + Bbest[i].TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение B
                            Console.Write("Значение __B__ = ");
                            Console.WriteLine(B[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение F
                KnowlegeBaseSARules[] F = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    if (i == 0)
                    {
                        F[i] = new KnowlegeBaseSARules(Population[i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                F[i].TermsSet[t].Parametrs[p] = Vf * B[i].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение F
                                Console.Write("Значение __F__ = ");
                                Console.WriteLine(F[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                    else
                    {
                        F[i] = new KnowlegeBaseSARules(Population[i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                F[i].TermsSet[t].Parametrs[p] = Vf * B[i].TermsSet[t].Parametrs[p] + wf * F[i - 1].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение F
                                Console.Write("Значение __F__ = ");
                                Console.WriteLine(F[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                }
                List <int> [] neihbors = new List <int> [Population.Length];
                //расчитываем значение alocal
                KnowlegeBaseSARules[] alocal = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    alocal[i]   = new KnowlegeBaseSARules(Population[i]);
                    neihbors[i] = countneihbors(Population[i]);

/*
 #if debug
 *                  //вывод значений количества соседей
 *                  for (int g = 0; g < Population.Length; g++)
 *                  {
 *                      Console.Write("Знаение countneihbors = ");
 *                      Console.WriteLine(countneihbors(Population[g]));
 *                  }
 #endif
 */

                    for (int t = 0; t < alocal[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < alocal[i].TermsSet[t].CountParams; p++)
                        {
                            alocal[i].TermsSet[t].Parametrs[p] = 0;
                            for (int j = 0; j < neihbors[i].Count; j++)
                            {
                                double KRoofij = CalcKroof(K[i], K[neihbors[i][j]]);
                                KnowlegeBaseSARules XRoofij = new KnowlegeBaseSARules(CalcXroof(Population[i], Population[neihbors[i][j]]));

                                alocal[i].TermsSet[t].Parametrs[p] += KRoofij * XRoofij.TermsSet[t].Parametrs[p];

#if debug
                                //выводим значение alocal
                                Console.Write("Знаение alocal = ");
                                Console.WriteLine(alocal[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                }

                //расчитываем значение Cbest
                double Cbest = 2 * (rand.NextDouble() - (dit / diter));
#if debug
                //выводим значение Cbest
                Console.Write("Значение Сbest = ");
                Console.WriteLine(Cbest);
#endif
                //расчитываем значение rand для Cbest
                double rand2;
                rand2 = it / iter - Cbest / 2;
#if debug
                //выводим значение rand2 для Cbest
                Console.Write("Значение Crand = ");
                Console.WriteLine(rand2);
#endif
                //расчитываем значение atarget
                KnowlegeBaseSARules[] atarget = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    atarget[i] = new KnowlegeBaseSARules(Population[i]);
                    double KRoofibest = CalcKroof(K[i], K[ibest]);
                    KnowlegeBaseSARules XRoofibest = new KnowlegeBaseSARules(CalcXroof(Population[i], Population[ibest]));
                    for (int t = 0; t < alocal[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < atarget[i].TermsSet[t].CountParams; p++)
                        {
                            atarget[i].TermsSet[t].Parametrs[p] = Cbest * KRoofibest * XRoofibest.TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение atarget
                            Console.Write("Знание atarget = ");
                            Console.WriteLine(atarget[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение a
                KnowlegeBaseSARules[] a = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    a[i] = new KnowlegeBaseSARules(Population[i]);
                    for (int t = 0; t < a[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < a[i].TermsSet[t].CountParams; p++)
                        {
                            a[i].TermsSet[t].Parametrs[p] = atarget[i].TermsSet[t].Parametrs[p] + alocal[i].TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение a
                            Console.Write("Значение __a__ = ");
                            Console.WriteLine(a[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение N
                KnowlegeBaseSARules[] N = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    if (i == 0)
                    {
                        N[i] = new KnowlegeBaseSARules(Population[i]);
                        for (int t = 0; t < N[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                N[i].TermsSet[t].Parametrs[p] = Vf * a[i].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение N
                                Console.Write("Значение __N__ = ");
                                Console.WriteLine(N[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                    else
                    {
                        N[i] = new KnowlegeBaseSARules(Population[i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < N[i].TermsSet[t].CountParams; p++)
                            {
                                N[i].TermsSet[t].Parametrs[p] = nmax * a[i].TermsSet[t].Parametrs[p] + wn * N[i - 1].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение N
                                Console.Write("Значение __N__ = ");
                                Console.WriteLine(N[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                }

                //расчитываем значение dX
                KnowlegeBaseSARules[] dX = new KnowlegeBaseSARules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    dX[i] = new KnowlegeBaseSARules(Population[i]);
                    for (int t = 0; t < a[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < a[i].TermsSet[t].CountParams; p++)
                        {
                            dX[i].TermsSet[t].Parametrs[p] = F[i].TermsSet[t].Parametrs[p] + N[i].TermsSet[t].Parametrs[p] + D;
#if debug
                            //выводим значение dX
                            Console.Write("Значение _dX__ = ");
                            Console.WriteLine(dX[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }



                //выводим значение BEST
                //   Console.Write("Значение BEST_ = ");
                //  Console.WriteLine(BEST);


                //расчитываем значение X(t+dt)
                for (int i = 0; i < Population.Length; i++)
                {
                    Population[i] = new KnowlegeBaseSARules(Population[i]);
                    for (int t = 0; t < Population[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                        {
                            Population[i].TermsSet[t].Parametrs[p] = Population[i].TermsSet[t].Parametrs[p] + calcdeltat(ct) * dX[i].TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение Xnew
                            Console.Write("Знание X(t+dt) = ");
                            Console.WriteLine(Population[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }



                for (int i = 0; i < Population.Length; i++)
                {
                    double temp = result.ErrorLearnSamples(Population[i]);
                    if (double.IsNaN(temp) || double.IsInfinity(temp))
                    {
                        result.UnlaidProtectionFix(Xfood);
                        temp = result.ErrorLearnSamples(Population[i]);
                    }

                    if (temp < bestError)
                    {
                        BEST      = new KnowlegeBaseSARules(Population[i]);
                        bestError = temp;
                    }
                }


                double y = it;
                if (y % 50 == 0 & y != 0)
                {
                    Console.WriteLine(it);
                    Console.WriteLine(bestError);
                }
#if debug
                // выводим значение лучшей ошибки Kbest
                Console.Write("Значние BestError = ");
                Console.WriteLine(bestError);

                Console.WriteLine(".");
#endif
            }
            result.RulesDatabaseSet[0] = BEST;
            return(result);
        }