Exemplo n.º 1
0
        protected NdArray ForwardCpu(NdArray x)
        {
            int[] inputShape  = x.Shape;
            int[] outputShape = this.Bias.Shape;

            List <int> shapeList = new List <int>();

            for (int i = 0; i < this.Axis; i++)
            {
                shapeList.Add(1);
            }

            shapeList.AddRange(outputShape);

            for (int i = 0; i < inputShape.Length - this.Axis - outputShape.Length; i++)
            {
                shapeList.Add(1);
            }

            int[] y1Shape = shapeList.ToArray();

            NdArray y1 = new Reshape(y1Shape).Forward(this.Bias)[0];
            NdArray y2 = new Broadcast(inputShape).Forward(y1)[0];

            return(x + y2);
        }
Exemplo n.º 2
0
        private NdArray ForwardCpu([NotNull] NdArray x)
        {
            int[] inputShape  = x.Shape;
            int[] outputShape = Weight.Shape;

            List <int> shapeList = new List <int>();

            for (int i = 0; i < Axis; i++)
            {
                shapeList.Add(1);
            }

            shapeList.AddRange(outputShape);

            for (int i = 0; i < inputShape.Length - Axis - outputShape.Length; i++)
            {
                shapeList.Add(1);
            }

            int[] preShape = shapeList.ToArray();

            NdArray y1 = new Reshape(preShape).Forward(false, Weight)[0];
            NdArray y2 = new Broadcast(inputShape).Forward(false, y1)[0];

            if (BiasTerm)
            {
                NdArray b1 = new Reshape(preShape).Forward(false, Bias)[0];
                NdArray b2 = new Broadcast(inputShape).Forward(false, b1)[0];

                return(x * y2 + b2);
            }

            return(x * y2);
        }
Exemplo n.º 3
0
        public void Reshape()
        {
            var x  = new PlaceHolder <T>("x");
            var op = new Reshape <T>(x, new Shape(1, 1, -1, 1));

            using (var session = new Session <T>())
            {
                // [4] -> [1,1,4,1]
                var result = session.Run(op, new Dictionary <string, Volume <T> > {
                    { "x", NewVolume(new[] { 1.0, 2.0, 3.0, 4.0 }, Volume.Shape.From(4)) }
                });
                Assert.AreEqual(new Shape(1, 1, 4, 1), result.Shape);

                // [8] -> [1,1,8,1]
                result = session.Run(op, new Dictionary <string, Volume <T> >
                {
                    {
                        "x", NewVolume(new[]
                        {
                            1.0, 2.0, 3.0, 4.0,
                            1.0, 2.0, 3.0, 4.0
                        }, Volume.Shape.From(8))
                    }
                });
                Assert.AreEqual(new Shape(1, 1, 8, 1), result.Shape);
            }
        }
Exemplo n.º 4
0
        public void ReshapeDerivate()
        {
            var x    = new PlaceHolder <T>("x");
            var op   = new Reshape <T>(x, new Shape(1, 1, -1, 1));
            var grad = new PlaceHolder <T>("grad");

            using (var session = new Session <T>())
            {
                op.Derivate = grad;
                op.Differentiate();

                var diff = x.Derivate;

                // [4,1,1,1] -> [1,1,4,1]
                var result = session.Run(op, new Dictionary <string, Volume <T> > {
                    { "x", NewVolume(new[] { 1.0, 2.0, 3.0, 4.0 }, Volume.Shape.From(4, 1, 1, 1)) }
                });

                // [1,1,4,1] -> [4,1,1,1]
                result = session.Run(diff,
                                     new Dictionary <string, Volume <T> >
                {
                    { "x", NewVolume(new[] { 1.0, 2.0, 3.0, 4.0 }, Volume.Shape.From(4)) },
                    { "grad", NewVolume(new[] { 1.0, 1.0, 1.0, 1.0 }, Volume.Shape.From(1, 1, 4, 1)) }
                });
                Assert.AreEqual(new Shape(4, 1, 1, 1), result.Shape);
            }
        }
Exemplo n.º 5
0
        public static Model ConvolutionalNeuralNetworkModel()
        {
            var images = Variable <float>();
            var labels = Variable <float>();

            ILayer <float> net = new Reshape <float>(images, PartialShape.Create(-1, 1, 28, 28));

            net = new Convolution2D <float>(net.Output, 5, 5, 16);
            net = new ActivationReLU <float>(net.Output);
            net = new Pooling2D <float>(net.Output, PoolingMode.MAX, 2, 2, 2, 2);

            net = new Convolution2D <float>(net.Output, 5, 5, 32);
            net = new ActivationTanh <float>(net.Output);
            net = new Pooling2D <float>(net.Output, PoolingMode.MAX, 2, 2, 2, 2);

            net = new Reshape <float>(net.Output, PartialShape.Create(-1, net.Output.Shape.Skip(1).Aggregate(ScalarOps.Mul)));
            net = new FullyConnected <float>(net.Output, 50);
            net = new ActivationTanh <float>(net.Output);
            net = new FullyConnected <float>(net.Output, 10);

            return(new Model {
                Loss = new SoftmaxCrossEntropy <float>(net.Output, labels),
                Images = images,
                Labels = labels
            });
        }
Exemplo n.º 6
0
 public override void Save(XmlElement layer)
 {
     layer.SetAttribute("normalize", Normalize.ToString().ToLowerInvariant());
     layer.SetAttribute("activation", Activation.ToString());
     layer.SetAttribute("reshape", Reshape.ToString().ToLowerInvariant());
     if (Reshape)
     {
         layer.SetAttribute("shape", Shape.Serialize());
     }
 }
Exemplo n.º 7
0
        private Layer ConvertShape2(paddle.OpDesc op)
        {
            var x      = GetParameter(op.Inputs, "X").Arguments[0];
            var output = GetParameter(op.Outputs, "Out").Arguments[0];
            var shape  = GetAttr(op, "shape").Ints.ToArray();

            var layer = new Reshape(GetVarShape(x), shape);

            _inputs.Add(layer.Input, x);
            _outputs.Add(output, layer.Output);
            return(layer);
        }
Exemplo n.º 8
0
        public void Reshape1()
        {
            var x  = new Const <double>(1.0, "x");
            var op = new Reshape <double>(x, new Shape(1, 2, 3, 4));

            var xml          = op.ToXml();
            var deserialized = SerializationExtensions.FromXml <double>(xml) as Reshape <double>;

            Assert.IsNotNull(deserialized);
            Assert.AreEqual(1, deserialized.Parents.Count);
            Assert.AreEqual("x", (deserialized.Parents[0] as Const <double>).Name);
            Assert.AreEqual(op.OutputShape, deserialized.OutputShape);
        }
Exemplo n.º 9
0
        public void Reshape2()
        {
            var x     = new Const <double>(1.0, "x");
            var shape = new Const <double>(new[] { 1.0, 2.0, 3.0, 4.0 }, "shape");
            var op    = new Reshape <double>(x, shape);

            var xml          = op.ToXml();
            var deserialized = SerializationExtensions.FromXml <double>(xml) as Reshape <double>;

            Assert.IsNotNull(deserialized);
            Assert.AreEqual(2, deserialized.Parents.Count);
            Assert.AreEqual("x", (deserialized.Parents[0] as Const <double>).Name);
            Assert.AreEqual("shape", (deserialized.Parents[1] as Const <double>).Name);
        }
Exemplo n.º 10
0
        private Layer ConvertMean(tflite.Operator op)
        {
            var inputs = op.GetInputsArray();
            var input  = _graph.Tensors(inputs[0]).Value;
            var axes   = _model.GetTensor <int>(_graph.Tensors(inputs[1]).Value);

            if (axes.ToArray().SequenceEqual(new[] { 1, 2 }))
            {
                var layer = new GlobalAveragePool(input.GetShapeArray().ToNCHW());
                _inputs.Add(layer.Input, inputs[0]);
                var reshape = new Reshape(layer.Output.Dimensions, new[] { -1, layer.Output.Dimensions[1] });
                reshape.Input.SetConnection(layer.Output);
                _outputs.Add(op.Outputs(0), layer.Output);
                return(reshape);
            }
            else
            {
                throw new LayerNotSupportedException(op.ToString(), "Only [1,2] axis mean is supported");
            }
        }
Exemplo n.º 11
0
        private Layer ConvertInnerProduct(LayerParameter layerParam)
        {
            var input = _outputs[layerParam.Bottom[0]];
            var param = layerParam.InnerProductParam;

            var weights = LoadBlob(layerParam.Blobs[0]);

            if (input.Dimensions.Length == 4 && (input.Dimensions[2] != 1 || input.Dimensions[3] != 1))
            {
                var flatten = new Reshape(input.Dimensions, new[] { -1, input.Dimensions.GetSize() });
                var layer   = new FullyConnected(flatten.Output.Dimensions, weights, null, ActivationFunctionType.Linear);
                flatten.Input.SetConnection(input);
                layer.Input.SetConnection(flatten.Output);
                _outputs[layerParam.Top[0]] = layer.Output;
                return(layer);
            }
            else
            {
                var layer = new FullyConnected(input.Dimensions, weights, null, ActivationFunctionType.Linear);
                layer.Input.SetConnection(input);
                _outputs[layerParam.Top[0]] = layer.Output;
                return(layer);
            }
        }
Exemplo n.º 12
0
        protected NdArray ForwardCpu(NdArray x)
        {
            int[] inputShape  = x.Shape;
            int[] outputShape = this.Weight.Shape;

            List <int> shapeList = new List <int>();

            for (int i = 0; i < this.Axis; i++)
            {
                shapeList.Add(1);
            }

            shapeList.AddRange(outputShape);

            for (int i = 0; i < inputShape.Length - this.Axis - outputShape.Length; i++)
            {
                shapeList.Add(1);
            }

            int[] preShape = shapeList.ToArray();

            NdArray y1 = new Reshape(preShape).Forward(this.Weight)[0];
            NdArray y2 = new Broadcast(inputShape).Forward(y1)[0];

            if (BiasTerm)
            {
                NdArray b1 = new Reshape(preShape).Forward(this.Bias)[0];
                NdArray b2 = new Broadcast(inputShape).Forward(b1)[0];

                return(x * y2 + b2);
            }
            else
            {
                return(x * y2);
            }
        }
Exemplo n.º 13
0
 public void AllocateInputMemory(Reshape layer, OutputConnector input, InferenceContext context)
 {
     context.MainMemoryMap.Add(layer.Output, context.GetOrAllocateMainMemory(layer.Input.Connection.From));
 }
        protected override bool HandleMessage(WidgetMessage message, Widget widget, IntPtr param1, IntPtr param2)
        {
            bool handled = false;

            switch (message)
            {
            case WidgetMessage.Create:
                Created?.Invoke(widget, param1 != default, ref handled);
                break;

            case WidgetMessage.Destroy:
                Destroyed?.Invoke(widget, param1 != default, ref handled);
                break;

            case WidgetMessage.Paint:
                Paint?.Invoke(widget, ref handled);
                break;

            case WidgetMessage.Draw:
                Draw?.Invoke(widget, ref handled);
                break;

            case WidgetMessage.KeyPress:
                KeyPressed?.Invoke(widget, ref AsRef <KeyState>(param1), ref handled);
                break;

            case WidgetMessage.KeyTakeFocus:
                TakingFocus?.Invoke(widget, param1 != default, ref handled);
                break;

            case WidgetMessage.KeyLoseFocus:
                LostFocus?.Invoke(widget, param1 != default, ref handled);
                break;

            case WidgetMessage.MouseDown:
                MouseDown?.Invoke(widget, ref AsRef <MouseState>(param1), ref handled);
                break;

            case WidgetMessage.MouseDrag:
                MouseDrag?.Invoke(widget, ref AsRef <MouseState>(param1), ref handled);
                break;

            case WidgetMessage.MouseUp:
                MouseUp?.Invoke(widget, ref AsRef <MouseState>(param1), ref handled);
                break;

            case WidgetMessage.Reshape:
                Reshape?.Invoke(widget, Widget.GetOrCreate(param1), ref AsRef <WidgetGeometryChange>(param2), ref handled);
                break;

            case WidgetMessage.ExposedChanged:
                ExposedChanged?.Invoke(widget, ref handled);
                break;

            case WidgetMessage.AcceptChild:
                ChildAdded?.Invoke(widget, Widget.GetOrCreate(param1), ref handled);
                break;

            case WidgetMessage.LoseChild:
                ChildRemoved?.Invoke(widget, Widget.GetOrCreate(param1), ref handled);
                break;

            case WidgetMessage.AcceptParent:
                ParentChanged?.Invoke(widget, param1 != default ? Widget.GetOrCreate(param1) : null, ref handled);
                break;

            case WidgetMessage.Shown:
                Shown?.Invoke(widget, Widget.GetOrCreate(param1), ref handled);
                break;

            case WidgetMessage.Hidden:
                Hidden?.Invoke(widget, Widget.GetOrCreate(param1), ref handled);
                break;

            case WidgetMessage.DescriptorChanged:
                DescriptorChanged?.Invoke(widget, ref handled);
                break;

            case WidgetMessage.PropertyChanged:
                PropertyChanged?.Invoke(widget, param1.ToInt32(), param2, ref handled);
                break;

            case WidgetMessage.MouseWheel:
                MouseWheel?.Invoke(widget, ref AsRef <MouseState>(param1), ref handled);
                break;

            case WidgetMessage.CursorAdjust:
                CursorAdjust?.Invoke(widget, ref AsRef <MouseState>(param1), ref AsRef <CursorStatus>(param2), ref handled);
                break;
            }
            return(handled);
        }