public SimulationExample2_reconstructionfound Get()
        {
            var r    = new V4D.Reconstruction.SimulationExample2_reconstructionfound();
            var info = new ReconstructionInfo();

            var allLines =
                System.IO.File.ReadAllLines(
                    "eiffel tower.txt");


            var all = allLines.Select(x => new V4D.Reconstruction.ContentInfo()
            {
                SourceId = x
            });

            var reconstruction1 = allLines.PickRandom(240)
                                  .Select(x => new V4D.Reconstruction.ContentInfo()
            {
                SourceId = x
            });

            //var reconstruction2 = allLines.PickRandom(12).Select(x => new V4D.Reconstruction.ContentInfo() {SourceId = x});

            info.UsedContent.AddRange(reconstruction1);
            info.InputContent.AddRange(all);

            info.ReconstructionId = new UUID {
                Id = "<reconstruction id>"
            };
            info.ReconstructionGroupId = new UUID {
                Id = "<reconstruction group id>"
            };
            info.VisualAnalysisTags.Add("Tower");

            r.Reconstructions.Add(info);
            //var t = Task.FromResult(r);
            return(r);
        }
        public static void RunSpeedLarge()
        {
            var folder = @"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\";

            var    data             = LMC.Load(folder);
            int    gridSize         = 3072;
            int    subgridsize      = 32;
            int    kernelSize       = 16;
            int    max_nr_timesteps = 1024;
            double cellSize         = 1.5 / 3600.0 * PI / 180.0;
            int    wLayerCount      = 24;

            var maxW = 0.0;

            for (int i = 0; i < data.uvw.GetLength(0); i++)
            {
                for (int j = 0; j < data.uvw.GetLength(1); j++)
                {
                    maxW = Math.Max(maxW, Math.Abs(data.uvw[i, j, 2]));
                }
            }
            maxW = Partitioner.MetersToLambda(maxW, data.frequencies[data.frequencies.Length - 1]);

            var visCount2 = 0;

            for (int i = 0; i < data.flags.GetLength(0); i++)
            {
                for (int j = 0; j < data.flags.GetLength(1); j++)
                {
                    for (int k = 0; k < data.flags.GetLength(2); k++)
                    {
                        if (!data.flags[i, j, k])
                        {
                            visCount2++;
                        }
                    }
                }
            }
            double wStep = maxW / (wLayerCount);

            data.c        = new GriddingConstants(data.visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep);
            data.metadata = Partitioner.CreatePartition(data.c, data.uvw, data.frequencies);

            var psfVis = new Complex[data.uvw.GetLength(0), data.uvw.GetLength(1), data.frequencies.Length];

            for (int i = 0; i < data.visibilities.GetLength(0); i++)
            {
                for (int j = 0; j < data.visibilities.GetLength(1); j++)
                {
                    for (int k = 0; k < data.visibilities.GetLength(2); k++)
                    {
                        if (!data.flags[i, j, k])
                        {
                            psfVis[i, j, k] = new Complex(1.0, 0);
                        }
                        else
                        {
                            psfVis[i, j, k] = new Complex(0, 0);
                        }
                    }
                }
            }

            Console.WriteLine("gridding psf");
            var psfGrid = IDG.GridW(data.c, data.metadata, psfVis, data.uvw, data.frequencies);
            var psf     = FFT.WStackIFFTFloat(psfGrid, data.c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory("PSFSpeedExperimentApproxDeconv");
            FitsIO.Write(psf, "psfFull.fits");


            //tryout with simply cutting the PSF
            ReconstructionInfo experimentInfo = null;
            var psfCuts   = new int[] { 2, 8, 16, 32, 64 };
            var outFolder = "PSFSpeedExperimentApproxDeconv";

            outFolder += @"\";
            var fileHeader = "cycle;lambda;sidelobe;maxPixel;dataPenalty;regPenalty;currentRegPenalty;converged;iterCount;ElapsedTime";

            /*
             * foreach (var cut in psfCuts)
             * {
             *  using (var writer = new StreamWriter(outFolder + cut + "Psf.txt", false))
             *  {
             *      writer.WriteLine(fileHeader);
             *      experimentInfo = ReconstructSimple(data, psf, outFolder, cut, 8, cut+"dirty", cut+"x", writer, 0.0, 1e-5f, false);
             *      File.WriteAllText(outFolder + cut + "PsfTotal.txt", experimentInfo.totalDeconv.Elapsed.ToString());
             *  }
             * }*/

            Directory.CreateDirectory("PSFSpeedExperimentApproxPSF");
            outFolder  = "PSFSpeedExperimentApproxPSF";
            outFolder += @"\";
            foreach (var cut in psfCuts)
            {
                using (var writer = new StreamWriter(outFolder + cut + "Psf.txt", false))
                {
                    writer.WriteLine(fileHeader);
                    experimentInfo = ReconstructSimple(data, psf, outFolder, cut, 8, cut + "dirty", cut + "x", writer, 0.0, 1e-5f, true);
                    File.WriteAllText(outFolder + cut + "PsfTotal.txt", experimentInfo.totalDeconv.Elapsed.ToString());
                }
            }
        }
        private static ReconstructionInfo ReconstructGradientApprox(Data input, float[,] fullPsf, string folder, int cutFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon)
        {
            var info            = new ReconstructionInfo();
            var psfCut          = PSF.Cut(fullPsf, cutFactor);
            var maxSidelobe     = PSF.CalcMaxSidelobe(fullPsf, cutFactor);
            var totalSize       = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize);
            var psfBMap         = psfCut;
            var bMapCalculator  = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)));
            var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)));
            var fastCD          = new FastSerialCD(totalSize, psfCut);
            var fastCD2         = new FastSerialCD(totalSize, psfCut);

            fastCD2.ResetLipschitzMap(fullPsf);
            FitsIO.Write(psfCut, folder + cutFactor + "psf.fits");

            var lambda     = LAMBDA_GLOBAL * fastCD.MaxLipschitz;
            var lambdaTrue = (float)(LAMBDA_GLOBAL * PSF.CalcMaxLipschitz(fullPsf));

            var xImage      = new float[input.c.GridSize, input.c.GridSize];
            var residualVis = input.visibilities;
            DeconvolutionResult lastResult = null;
            var firstTimeConverged         = false;
            var lastLambda = 0.0f;

            for (int cycle = 0; cycle < maxMajor; cycle++)
            {
                Console.WriteLine("cycle " + cycle);
                var dirtyGrid  = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies);
                var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits");

                //calc data and reg penalty
                var dataPenalty       = Residuals.CalcPenalty(dirtyImage);
                var regPenalty        = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha);
                var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha);
                info.lastDataPenalty = dataPenalty;
                info.lastRegPenalty  = regPenalty;

                var maxDirty = Residuals.GetMax(dirtyImage);
                var bMap     = bMapCalculator.Convolve(dirtyImage);
                FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + ".fits");
                var maxB             = Residuals.GetMax(bMap);
                var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f);
                var currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                var currentLambda    = Math.Max(currentSideLobe / alpha, lambda);

                writer.Write(cycle + ";" + currentLambda + ";" + currentSideLobe + ";" + ";" + fastCD2.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");;
                writer.Flush();

                //check wether we can minimize the objective further with the current psf
                var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff;
                var minimumReached   = (lastResult != null && lastResult.Converged && fastCD2.GetAbsMaxDiff(xImage, dirtyImage, lambdaTrue, alpha) < MAJOR_EPSILON && currentLambda == lambda);
                if (lambda == lastLambda & !firstTimeConverged)
                {
                    firstTimeConverged = true;
                    minimumReached     = false;
                }

                if (!objectiveReached & !minimumReached)
                {
                    //writer.Write(firstTimeConverged + ";");
                    //writer.Flush();
                    info.totalDeconv.Start();
                    if (!firstTimeConverged)
                    {
                        lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon);
                    }
                    else
                    {
                        bMap = bMapCalculator2.Convolve(dirtyImage);
                        //FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + "_full.fits");
                        maxB             = Residuals.GetMax(bMap);
                        correctionFactor = Math.Max(maxB / (maxDirty * fastCD2.MaxLipschitz), 1.0f);
                        currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                        currentLambda    = Math.Max(currentSideLobe / alpha, lambdaTrue);
                        info.totalDeconv.Start();
                        lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon);
                        info.totalDeconv.Stop();
                    }

                    info.totalDeconv.Stop();

                    FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits");
                    writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n");
                    writer.Flush();

                    FFT.Shift(xImage);
                    var xGrid = FFT.Forward(xImage);
                    FFT.Shift(xImage);
                    var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies);
                    residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags);
                }
                else
                {
                    writer.Write(false + ";0;0\n");
                    writer.Flush();

                    break;
                }

                lastLambda = currentLambda;
            }

            bMapCalculator.Dispose();
            bMapCalculator2.Dispose();

            return(info);
        }
        public static void RunApproximationMethods()
        {
            var folder     = @"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\";
            var data       = LMC.Load(folder);
            var rootFolder = Directory.GetCurrentDirectory();

            var maxW = 0.0;

            for (int i = 0; i < data.uvw.GetLength(0); i++)
            {
                for (int j = 0; j < data.uvw.GetLength(1); j++)
                {
                    maxW = Math.Max(maxW, Math.Abs(data.uvw[i, j, 2]));
                }
            }
            maxW = Partitioner.MetersToLambda(maxW, data.frequencies[data.frequencies.Length - 1]);

            var visCount2 = 0;

            for (int i = 0; i < data.flags.GetLength(0); i++)
            {
                for (int j = 0; j < data.flags.GetLength(1); j++)
                {
                    for (int k = 0; k < data.flags.GetLength(2); k++)
                    {
                        if (!data.flags[i, j, k])
                        {
                            visCount2++;
                        }
                    }
                }
            }
            var    visibilitiesCount = visCount2;
            int    gridSize          = 3072;
            int    subgridsize       = 32;
            int    kernelSize        = 16;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.5 / 3600.0 * PI / 180.0;
            int    wLayerCount       = 24;
            double wStep             = maxW / (wLayerCount);

            data.c                 = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep);
            data.metadata          = Partitioner.CreatePartition(data.c, data.uvw, data.frequencies);
            data.visibilitiesCount = visibilitiesCount;

            var psfVis = new Complex[data.uvw.GetLength(0), data.uvw.GetLength(1), data.frequencies.Length];

            for (int i = 0; i < data.visibilities.GetLength(0); i++)
            {
                for (int j = 0; j < data.visibilities.GetLength(1); j++)
                {
                    for (int k = 0; k < data.visibilities.GetLength(2); k++)
                    {
                        if (!data.flags[i, j, k])
                        {
                            psfVis[i, j, k] = new Complex(1.0, 0);
                        }
                        else
                        {
                            psfVis[i, j, k] = new Complex(0, 0);
                        }
                    }
                }
            }

            Console.WriteLine("gridding psf");
            var psfGrid = IDG.GridW(data.c, data.metadata, psfVis, data.uvw, data.frequencies);
            var psf     = FFT.WStackIFFTFloat(psfGrid, data.c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory("PSFSizeExperimentLarge");
            Directory.SetCurrentDirectory("PSFSizeExperimentLarge");
            FitsIO.Write(psf, "psfFull.fits");

            Console.WriteLine(PSF.CalcMaxLipschitz(psf));
            Console.WriteLine(visCount2);

            //reconstruct with full psf and find reference objective value
            var fileHeader         = "cycle;lambda;sidelobe;maxPixel;dataPenalty;regPenalty;currentRegPenalty;converged;iterCount;ElapsedTime";
            var objectiveCutoff    = REFERENCE_L2_PENALTY + REFERENCE_ELASTIC_PENALTY;
            var recalculateFullPSF = true;

            if (recalculateFullPSF)
            {
                ReconstructionInfo referenceInfo = null;
                using (var writer = new StreamWriter("1Psf.txt", false))
                {
                    writer.WriteLine(fileHeader);
                    referenceInfo = ReconstructSimple(data, psf, "", 1, 12, "dirtyReference", "xReference", writer, 0.0, 1e-5f, false);
                    File.WriteAllText("1PsfTotal.txt", referenceInfo.totalDeconv.Elapsed.ToString());
                }
                objectiveCutoff = referenceInfo.lastDataPenalty + referenceInfo.lastRegPenalty;
            }

            //tryout with simply cutting the PSF
            ReconstructionInfo experimentInfo = null;
            var psfCuts   = new int[] { 16, 32 };
            var outFolder = "cutPsf";

            Directory.CreateDirectory(outFolder);
            outFolder += @"\";
            foreach (var cut in psfCuts)
            {
                using (var writer = new StreamWriter(outFolder + cut + "Psf.txt", false))
                {
                    writer.WriteLine(fileHeader);
                    experimentInfo = ReconstructSimple(data, psf, outFolder, cut, 12, cut + "dirty", cut + "x", writer, 0.0, 1e-5f, false);
                    File.WriteAllText(outFolder + cut + "PsfTotal.txt", experimentInfo.totalDeconv.Elapsed.ToString());
                }
            }

            //Tryout with cutting the PSF, but starting from the true bMap
            outFolder = "cutPsf2";
            Directory.CreateDirectory(outFolder);
            outFolder += @"\";
            foreach (var cut in psfCuts)
            {
                using (var writer = new StreamWriter(outFolder + cut + "Psf.txt", false))
                {
                    writer.WriteLine(fileHeader);
                    experimentInfo = ReconstructSimple(data, psf, outFolder, cut, 12, cut + "dirty", cut + "x", writer, 0.0, 1e-5f, true);
                    File.WriteAllText(outFolder + cut + "PsfTotal.txt", experimentInfo.totalDeconv.Elapsed.ToString());
                }
            }

            //combined, final solution. Cut the psf in half, optimize until convergence, and then do one more major cycle with the second method
            outFolder = "properSolution";
            Directory.CreateDirectory(outFolder);
            outFolder += @"\";
            foreach (var cut in psfCuts)
            {
                using (var writer = new StreamWriter(outFolder + cut + "Psf.txt", false))
                {
                    writer.WriteLine(fileHeader);
                    experimentInfo = ReconstructGradientApprox(data, psf, outFolder, cut, 12, cut + "dirty", cut + "x", writer, 0.0, 1e-5f);
                    File.WriteAllText(outFolder + cut + "PsfTotal.txt", experimentInfo.totalDeconv.Elapsed.ToString());
                }
            }

            Directory.SetCurrentDirectory(rootFolder);
        }
Exemplo n.º 5
0
        public static void Run()
        {
            var folder     = @"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\";
            var data       = LMC.Load(folder);
            var rootFolder = Directory.GetCurrentDirectory();

            var maxW = 0.0;

            for (int i = 0; i < data.uvw.GetLength(0); i++)
            {
                for (int j = 0; j < data.uvw.GetLength(1); j++)
                {
                    maxW = Math.Max(maxW, Math.Abs(data.uvw[i, j, 2]));
                }
            }
            maxW = Partitioner.MetersToLambda(maxW, data.frequencies[data.frequencies.Length - 1]);

            var visCount2 = 0;

            for (int i = 0; i < data.flags.GetLength(0); i++)
            {
                for (int j = 0; j < data.flags.GetLength(1); j++)
                {
                    for (int k = 0; k < data.flags.GetLength(2); k++)
                    {
                        if (!data.flags[i, j, k])
                        {
                            visCount2++;
                        }
                    }
                }
            }
            var    visibilitiesCount = visCount2;
            int    gridSize          = 2048;
            int    subgridsize       = 32;
            int    kernelSize        = 16;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 2.0 / 3600.0 * PI / 180.0;
            int    wLayerCount       = 32;
            double wStep             = maxW / (wLayerCount);

            data.c                 = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep);
            data.metadata          = Partitioner.CreatePartition(data.c, data.uvw, data.frequencies);
            data.visibilitiesCount = visibilitiesCount;

            var psfVis = new Complex[data.uvw.GetLength(0), data.uvw.GetLength(1), data.frequencies.Length];

            for (int i = 0; i < data.visibilities.GetLength(0); i++)
            {
                for (int j = 0; j < data.visibilities.GetLength(1); j++)
                {
                    for (int k = 0; k < data.visibilities.GetLength(2); k++)
                    {
                        if (!data.flags[i, j, k])
                        {
                            psfVis[i, j, k] = new Complex(1.0, 0);
                        }
                        else
                        {
                            psfVis[i, j, k] = new Complex(0, 0);
                        }
                    }
                }
            }

            Console.WriteLine("gridding psf");
            var psfGrid = IDG.GridW(data.c, data.metadata, psfVis, data.uvw, data.frequencies);
            var psf     = FFT.WStackIFFTFloat(psfGrid, data.c.VisibilitiesCount);

            FFT.Shift(psf);
            var objectiveCutoff = REFERENCE_L2_PENALTY + REFERENCE_ELASTIC_PENALTY;
            var actualLipschitz = (float)PSF.CalcMaxLipschitz(psf);

            Console.WriteLine("Calc Histogram");
            var histPsf     = GetHistogram(psf, 256, 0.05f);
            var experiments = new float[] { 0.5f, /*0.4f, 0.2f, 0.1f, 0.05f*/ };

            Console.WriteLine("Done Histogram");

            Directory.CreateDirectory("PSFMask");
            Directory.SetCurrentDirectory("PSFMask");
            FitsIO.Write(psf, "psfFull.fits");

            //reconstruct with full psf and find reference objective value
            ReconstructionInfo experimentInfo = null;
            var outFolder  = "";
            var fileHeader = "cycle;lambda;sidelobe;dataPenalty;regPenalty;currentRegPenalty;converged;iterCount;ElapsedTime";

            foreach (var maskPercent in experiments)
            {
                using (var writer = new StreamWriter(outFolder + maskPercent + "Psf.txt", false))
                {
                    var maskedPSF    = Common.Copy(psf);
                    var maskedPixels = MaskPSF(maskedPSF, histPsf, maskPercent);
                    writer.WriteLine(maskedPixels + ";" + maskedPixels / (double)maskedPSF.Length);
                    FitsIO.Write(maskedPSF, outFolder + maskPercent + "Psf.fits");

                    writer.WriteLine(fileHeader);
                    writer.Flush();
                    experimentInfo = Reconstruct(data, actualLipschitz, maskedPSF, outFolder, 1, 10, maskPercent + "dirty", maskPercent + "x", writer, objectiveCutoff, 1e-5f, false);
                    File.WriteAllText(outFolder + maskPercent + "PsfTotal.txt", experimentInfo.totalDeconv.Elapsed.ToString());
                }
            }

            Directory.SetCurrentDirectory(rootFolder);
        }
Exemplo n.º 6
0
        private static ReconstructionInfo Reconstruct(Data input, float fullLipschitz, float[,] maskedPsf, string folder, float maskFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon, bool maskPsf2)
        {
            var info      = new ReconstructionInfo();
            var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize);

            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(maskedPsf, totalSize), new Rectangle(0, 0, maskedPsf.GetLength(0), maskedPsf.GetLength(1)));
            var maskedPsf2     = PSF.CalcPSFSquared(maskedPsf);

            if (maskPsf2)
            {
                Mask(maskedPsf2, 1e-5f);
            }
            writer.WriteLine((CountNonZero(maskedPsf2) - maskedPsf2.Length) / (double)maskedPsf2.Length);
            var fastCD = new FastSerialCD(totalSize, totalSize, maskedPsf, maskedPsf2);

            FitsIO.Write(maskedPsf, folder + maskFactor + "psf.fits");



            var lambda     = 0.4f * fastCD.MaxLipschitz;
            var lambdaTrue = 0.4f * fullLipschitz;
            var alpha      = 0.1f;

            var xImage      = new float[input.c.GridSize, input.c.GridSize];
            var residualVis = input.visibilities;
            DeconvolutionResult lastResult = null;

            for (int cycle = 0; cycle < maxMajor; cycle++)
            {
                Console.WriteLine("cycle " + cycle);
                var dirtyGrid  = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies);
                var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits");

                //calc data and reg penalty
                var dataPenalty       = Residuals.CalcPenalty(dirtyImage);
                var regPenalty        = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha);
                var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha);
                info.lastDataPenalty = dataPenalty;
                info.lastRegPenalty  = regPenalty;

                bMapCalculator.ConvolveInPlace(dirtyImage);
                //FitsIO.Write(dirtyImage, folder + dirtyPrefix + "bmap_" + cycle + ".fits");
                var currentLambda = lambda;

                writer.Write(cycle + ";" + currentLambda + ";" + Residuals.GetMax(dirtyImage) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");
                writer.Flush();

                //check wether we can minimize the objective further with the current psf
                var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff;
                var minimumReached   = (lastResult != null && lastResult.IterationCount < 100 && lastResult.Converged);
                if (!objectiveReached & !minimumReached)
                {
                    info.totalDeconv.Start();
                    lastResult = fastCD.Deconvolve(xImage, dirtyImage, currentLambda, alpha, 50000, epsilon);
                    info.totalDeconv.Stop();

                    FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits");
                    writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n");
                    writer.Flush();

                    FFT.Shift(xImage);
                    var xGrid = FFT.Forward(xImage);
                    FFT.Shift(xImage);
                    var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies);
                    residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags);
                }
                else
                {
                    writer.Write(false + ";0;0");
                    writer.Flush();
                    break;
                }
            }

            return(info);
        }