/// <summary> /// Tests whether two samples comes from the /// same distribution without assuming normality. /// </summary> /// /// <param name="sample1">The first sample.</param> /// <param name="sample2">The second sample.</param> /// <param name="alternate">The alternative hypothesis (research hypothesis) to test.</param> /// public MannWhitneyWilcoxonTest(double[] sample1, double[] sample2, TwoSampleHypothesis alternate = TwoSampleHypothesis.ValuesAreDifferent) { int n1 = sample1.Length; int n2 = sample2.Length; int n = n1 + n2; // Concatenate both samples and rank them double[] samples = sample1.Concatenate(sample2); double[] rank = Accord.Statistics.Tools.Rank(samples); // Split the rankings back and sum Rank1 = rank.Submatrix(0, n1 - 1); Rank2 = rank.Submatrix(n1, n - 1); double t1 = RankSum1 = Rank1.Sum(); double t2 = RankSum2 = Rank2.Sum(); // Estimated values for t under the null double t1max = n1 * n2 + (n1 * (n1 + 1)) / 2.0; double t2max = n1 * n2 + (n2 * (n2 + 1)) / 2.0; // Diff in observed t and estimated t double u1 = Statistic1 = t1max - t1; double u2 = Statistic2 = t2max - t2; double hypothesizedValue = (n1 * n2) / 2.0; Compute(u1, rank, n1, n2, alternate); }
/// <summary> /// Tests whether two samples comes from the /// same distribution without assuming normality. /// </summary> /// /// <param name="sample1">The first sample.</param> /// <param name="sample2">The second sample.</param> /// <param name="alternate">The alternative hypothesis (research hypothesis) to test.</param> /// <param name="exact">True to compute the exact distribution. May require a significant /// amount of processing power for large samples (n > 12). If left at null, whether to /// compute the exact or approximate distribution will depend on the number of samples. /// Default is null.</param> /// <param name="adjustForTies">Whether to account for ties when computing the /// rank statistics or not. Default is true.</param> /// public MannWhitneyWilcoxonTest(double[] sample1, double[] sample2, TwoSampleHypothesis alternate = TwoSampleHypothesis.ValuesAreDifferent, bool?exact = null, bool adjustForTies = true) { this.NumberOfSamples1 = sample1.Length; this.NumberOfSamples2 = sample2.Length; int n = NumberOfSamples1 + NumberOfSamples2; // Concatenate both samples and rank them double[] samples = sample1.Concatenate(sample2); double[] rank = samples.Rank(adjustForTies: true); // Split the rankings back and sum Rank1 = rank.Get(0, NumberOfSamples1); Rank2 = rank.Get(NumberOfSamples1, 0); // Compute rank sum statistic this.RankSum1 = Rank1.Sum(); this.RankSum2 = Rank2.Sum(); // It is not necessary to compute the sum for both ranks. The sum of ranks in the second // sample can be determined from the first, since the sum of all the ranks equals n(n+1)/2 Accord.Diagnostics.Debug.Assert(RankSum2 == n * (n + 1) / 2 - RankSum1); // The U statistic can be obtained from the sum of the ranks in the sample, // minus the smallest value it can take (i.e. minus (n1 * (n1 + 1)) / 2.0), // meaning there is an wasy way to convert from W to U: // Compute Mann-Whitney's U statistic from the rank sum // as in Zar, Jerrold H. Biostatistical Analysis, 1998: this.Statistic1 = RankSum1 - (NumberOfSamples1 * (NumberOfSamples1 + 1)) / 2.0; // U1 this.Statistic2 = RankSum2 - (NumberOfSamples2 * (NumberOfSamples2 + 1)) / 2.0; // U2 // Again, it would not be necessary to compute U2 due the relation: Accord.Diagnostics.Debug.Assert(Statistic1 + Statistic2 == NumberOfSamples1 * NumberOfSamples2); Accord.Diagnostics.Debug.Assert(Statistic1 == MannWhitneyDistribution.MannWhitneyU(Rank1)); Accord.Diagnostics.Debug.Assert(Statistic2 == MannWhitneyDistribution.MannWhitneyU(Rank2)); // http://users.sussex.ac.uk/~grahamh/RM1web/WilcoxonHandoout2011.pdf // https://onlinecourses.science.psu.edu/stat464/node/38 // http://www.real-statistics.com/non-parametric-tests/wilcoxon-rank-sum-test/ // http://personal.vu.nl/R.Heijungs/QM/201516/stat/bs/documents/Supplement%2016B%20-%20Wilcoxon%20Mann-Whitney%20Small%20Sample%20Test.pdf // http://www.real-statistics.com/non-parametric-tests/wilcoxon-rank-sum-test/wilcoxon-rank-sum-exact-test/ // The smaller value of U1 and U2 is the one used when using significance tables this.Statistic = (NumberOfSamples1 < NumberOfSamples2) ? Statistic1 : Statistic2; this.Hypothesis = alternate; this.Tail = (DistributionTail)alternate; this.StatisticDistribution = new MannWhitneyDistribution(Rank1, Rank2, exact) { Correction = (Tail == DistributionTail.TwoTail) ? ContinuityCorrection.Midpoint : ContinuityCorrection.KeepInside }; this.PValue = StatisticToPValue(Statistic); this.OnSizeChanged(); }
public int CompareTo(Ranking other) { if (Ffl != other.Ffl) { return(Ffl.CompareTo(other.Ffl)); } if (Line != other.Line) { return(Line.CompareTo(other.Line)); } if (Position != other.Position) { return(Position.CompareTo(other.Position)); } if (Tier != other.Tier) { return(Tier.CompareTo(other.Tier)); } if (Rank != other.Rank) { return(Rank.CompareTo(other.Rank)); } if (Ppg != other.Ppg) { return(-Ppg.CompareTo(other.Ppg)); } return(Rank2.CompareTo(other.Rank2)); }
public override string ToString() { return(string.Format("{0}{0}{0} {1} {2}", ThreeRank.ToDisplay(), Rank1.ToDisplay(), Rank2.ToDisplay())); }
public override string ToString() { return(string.Format("{0}{0} {1} {2} {3}", PairRank.ToDisplay(), Rank1.ToDisplay(), Rank2.ToDisplay(), Rank3.ToDisplay())); }