Exemplo n.º 1
0
        public override List <Chromosome> Run(List <Chromosome> chromosomes, Parameters parameters)
        {
            chromosomes.Sort();
            List <float> distribution = new List <float>(chromosomes.Count);
            float        partialSum   = 0.0f;
            var          chosenOnes   = new List <Chromosome>();

            for (int i = 0; i < chromosomes.Count; ++i)
            {
                switch (parameters.FitnessStrategy)
                {
                case FitnessStrategy.MINIMIZE:
                    partialSum += 1.0f / parameters.Fitness.Get(chromosomes[i]);
                    break;

                case FitnessStrategy.MAXIMIZE:
                    partialSum += parameters.Fitness.Get(chromosomes[i]);
                    break;
                }
                distribution.Add(partialSum);
            }
            for (int i = 0; i < chromosomes.Count; ++i)
            {
                float      nextRand       = (float)RandomGeneratorThreadSafe.NextDouble(partialSum);
                float      chosenOne      = distribution.First(d => d >= nextRand);
                int        index          = distribution.IndexOf(chosenOne);
                Chromosome chosenSolution = chromosomes[index];
                chosenOnes.Add(chosenSolution);
            }
            return(chosenOnes);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Invokes the crossover operations on the next generation.
        /// </summary>
        /// <param name="population">The population.</param>
        /// <param name="parameters">The parameters.</param>
        /// <returns></returns>
        protected Population Crossover(IProblem problem, Population population, Parameters parameters)
        {
            Population newPopulation = population, childPopulation;

            foreach (var crossover in parameters.CrossoverOperators)
            {
                List <Thread> crossoverThreads = new List <Thread>();
                int           threadNumber     = Environment.ProcessorCount;
                int           tasksPerThread   = (population.Size / threadNumber);
                tasksPerThread += tasksPerThread % 2;

                newPopulation = Selection(newPopulation, parameters);
                newPopulation.Randomize();
                childPopulation = new Population(population.Size);
                for (int i = 0; i < threadNumber; ++i)
                {
                    int start = i * tasksPerThread;
                    int end;
                    if (i == threadNumber - 1)
                    {
                        end = population.Size;
                    }
                    else
                    {
                        end = (i + 1) * tasksPerThread;
                    }
                    Thread thread = new Thread(() => {
                        Chromosome parent1, parent2, child1, child2;
                        IGene[] child1Genes, child2Genes;
                        double nextCrossoverProb;
                        for (int j = start; j < end; j += 2)
                        {
                            nextCrossoverProb = RandomGeneratorThreadSafe.NextDouble();
                            parent1           = newPopulation[j];
                            parent2           = newPopulation[j + 1];
                            if (nextCrossoverProb > parameters.CrossoverProbability)
                            {
                                childPopulation[j]     = parent1;
                                childPopulation[j + 1] = parent2;
                                continue;
                            }
                            crossover.Run(parent1.Genes, parent2.Genes, out child1Genes, out child2Genes);
                            child1                 = chromosomeFactory.MakeChromosome(problem, parent1.Genes);
                            child2                 = chromosomeFactory.MakeChromosome(problem, parent2.Genes);
                            childPopulation[j]     = child1;
                            childPopulation[j + 1] = child2;
                        }
                    });
                    crossoverThreads.Add(thread);
                    thread.Start();
                }
                foreach (Thread thread in crossoverThreads)
                {
                    thread.Join();
                }
                newPopulation = childPopulation;
            }
            return(newPopulation);
        }
        protected void AnnealingStep(ref Chromosome currentSolution, ref Chromosome bestSolution, double temperature)
        {
            Chromosome newSolution = Parameters.ChromosomeFactory.RandomNeighbourSolution(currentSolution, Parameters.MutationOperators.First());
            float      delta       = GetDelta(newSolution, currentSolution);

            if (delta < 0)
            {
                SetNewSolutions(newSolution, ref currentSolution, ref bestSolution);
            }
            else
            {
                double x = RandomGeneratorThreadSafe.NextDouble();
                double e = Math.Exp(-delta / temperature);
                if (x < e)
                {
                    SetNewSolutions(newSolution, ref currentSolution, ref bestSolution);
                }
            }
        }
        private void PrepareUniform(int geneCount, out int[] ones, out int[] zeros)
        {
            List <int> onesList = new List <int>(), zerosList = new List <int>();
            double     nextDouble;

            for (int i = 0; i < geneCount; ++i)
            {
                nextDouble = RandomGeneratorThreadSafe.NextDouble();
                if (nextDouble > 0.50000000)
                {
                    onesList.Add(i);
                }
                else
                {
                    zerosList.Add(i);
                }
            }
            ones  = onesList.ToArray();
            zeros = zerosList.ToArray();
        }
Exemplo n.º 5
0
 /// <summary>
 /// Invokes the mutation operations on the next generation.
 /// </summary>
 /// <param name="population">The population.</param>
 /// <param name="parameters">The parameters.</param>
 /// <returns></returns>
 protected void Mutation(Population population, Parameters parameters)
 {
     foreach (var mutation in parameters.MutationOperators)
     {
         List <Thread> mutationThreads = new List <Thread>();
         int           threadNumber    = Environment.ProcessorCount;
         int           tasksPerThread  = population.Size / threadNumber;
         for (int i = 0; i < threadNumber; ++i)
         {
             int start = i * tasksPerThread;
             int end   = (i + 1) * tasksPerThread;
             if (i == threadNumber - 1)
             {
                 end += population.Size % threadNumber;
             }
             Thread thread = new Thread(() => {
                 double nextMutationProb;
                 for (int j = start; j < end; ++j)
                 {
                     nextMutationProb = RandomGeneratorThreadSafe.NextDouble();
                     if (nextMutationProb > parameters.MutationProbability)
                     {
                         continue;
                     }
                     Chromosome chromosome = population[j];
                     mutation.Run(ref chromosome);
                 }
             });
             mutationThreads.Add(thread);
             thread.Start();
         }
         foreach (Thread thread in mutationThreads)
         {
             thread.Join();
         }
     }
 }