Exemplo n.º 1
0
        public static QuantumSimulator WithJupyterDisplay(this QuantumSimulator simulator, IChannel channel, IConfigurationSource configurationSource)
        {
            simulator.DisableLogToConsole();
            simulator.OnLog += channel.Stdout;

            simulator.Register(
                typeof(Diagnostics.DumpMachine <>), typeof(JupyterDumpMachine <>),
                signature: typeof(ICallable)
                );

            var op         = ((GenericCallable)simulator.GetInstance(typeof(Microsoft.Quantum.Diagnostics.DumpMachine <>)));
            var concreteOp = op.FindCallable(typeof(QVoid), typeof(QVoid));

            ((JupyterDumpMachine <QVoid>)concreteOp).Channel             = channel;
            ((JupyterDumpMachine <QVoid>)concreteOp).ConfigurationSource = configurationSource;
            concreteOp = op.FindCallable(typeof(string), typeof(QVoid));
            ((JupyterDumpMachine <string>)concreteOp).Channel             = channel;
            ((JupyterDumpMachine <string>)concreteOp).ConfigurationSource = configurationSource;

            simulator.Register(
                typeof(Diagnostics.DumpRegister <>), typeof(JupyterDumpRegister <>),
                signature: typeof(ICallable)
                );

            op         = ((GenericCallable)simulator.GetInstance(typeof(Microsoft.Quantum.Diagnostics.DumpRegister <>)));
            concreteOp = op.FindCallable(typeof(QVoid), typeof(QVoid));
            ((JupyterDumpRegister <QVoid>)concreteOp).Channel             = channel;
            ((JupyterDumpRegister <QVoid>)concreteOp).ConfigurationSource = configurationSource;
            concreteOp = op.FindCallable(typeof(string), typeof(QVoid));
            ((JupyterDumpRegister <string>)concreteOp).Channel             = channel;
            ((JupyterDumpRegister <string>)concreteOp).ConfigurationSource = configurationSource;

            return(simulator);
        }
        public async Task <object> Simulate(string id, IDictionary <string, string> args, Action <string> logger) =>
        await IfReady(async() =>
        {
            using (var qsim = new QuantumSimulator())
            {
                qsim.DisableLogToConsole();
                qsim.OnLog += logger;

                var value = await Find(id).RunAsync(qsim, args);

                return(value);
            }
        });
Exemplo n.º 3
0
        public static QuantumSimulator WithTimestamps(this QuantumSimulator sim)
        {
            var stopwatch = new Stopwatch();

            stopwatch.Start();
            var last = stopwatch.Elapsed;

            sim.DisableLogToConsole();
            sim.OnLog += (message) =>
            {
                var now = stopwatch.Elapsed;
                Console.WriteLine($"[{now} +{now - last}] {message}");
                last = now;
            };
            return(sim);
        }
Exemplo n.º 4
0
        public async Task <ExecutionResult> RunAsync(string input, IChannel channel)
        {
            var(name, args) = ParseInput(input);

            var symbol = SymbolResolver.Resolve(name) as IQSharpSymbol;

            if (symbol == null)
            {
                throw new InvalidOperationException($"Invalid operation name: {name}");
            }

            using (var qsim = new QuantumSimulator())
            {
                qsim.DisableLogToConsole();
                qsim.OnLog += channel.Stdout;

                var value = await symbol.Operation.RunAsync(qsim, args);

                return(value.ToExecutionResult());
            }
        }
Exemplo n.º 5
0
        public void DumpSReturnsCorrectMatrix()
        {
            using var sim = new QuantumSimulator();
            var diagnostics = new List <object>();

            sim.OnDisplayableDiagnostic += diagnostic =>
            {
                diagnostics.Add(diagnostic);
            };
            sim.DisableLogToConsole();

            DumpS.Run(sim).Wait();

            Assert.Single(diagnostics);
            var diagnostic = diagnostics.Single();

            Assert.IsType <DisplayableUnitaryOperator>(diagnostic);
            var unitary = diagnostic as DisplayableUnitaryOperator;

            Assert.NotNull(unitary);
            Assert.Equal(1, unitary.Qubits?.Count);
            Assert.NotNull(unitary.Data);
            Assert.Equal(3, unitary.Data.ndim);
            Assert.Equal(2, unitary.Data.shape[0]);
            Assert.Equal(2, unitary.Data.shape[1]);
            Assert.Equal(2, unitary.Data.shape[2]);
            // Check that the matrix is [1 0; 0 𝑖].
            Assert.Equal(1.0, (double)unitary.Data[0, 0, 0], precision: 6);
            Assert.Equal(0.0, (double)unitary.Data[0, 1, 0], precision: 6);
            Assert.Equal(0.0, (double)unitary.Data[1, 0, 0], precision: 6);
            Assert.Equal(0.0, (double)unitary.Data[1, 1, 0], precision: 6);
            Assert.Equal(0.0, (double)unitary.Data[0, 0, 1], precision: 6);
            Assert.Equal(0.0, (double)unitary.Data[0, 1, 1], precision: 6);
            Assert.Equal(0.0, (double)unitary.Data[1, 0, 1], precision: 6);
            Assert.Equal(1.0, (double)unitary.Data[1, 1, 1], precision: 6);
        }
Exemplo n.º 6
0
        static async Task Main()
        {
            // We start by loading the training and validation data from our JSON
            // data file.
            var data = await LoadData("data.json");

            // We then define the classifier parameters where we want to start our
            // training iterations from. Since gradient descent is good at finding
            // local optima, it's helpful to have a variety of different starting
            // points.
            var parameterStartingPoints = new []
            {
                new [] { 0.060057, 3.00522, 2.03083, 0.63527, 1.03771, 1.27881, 4.10186, 5.34396 },
                new [] { 0.586514, 3.371623, 0.860791, 2.92517, 1.14616, 2.99776, 2.26505, 5.62137 },
                new [] { 1.69704, 1.13912, 2.3595, 4.037552, 1.63698, 1.27549, 0.328671, 0.302282 },
                new [] { 5.21662, 6.04363, 0.224184, 1.53913, 1.64524, 4.79508, 1.49742, 1.5455 }
            };

            // Convert samples to Q# form.
            var samples = new QArray <QArray <double> >(data.TrainingData.Features.Select(vector => new QArray <double>(vector)));

            // Once we have the data loaded and have initialized our target machine,
            // we can then use that target machine to train a QCC classifier.
            var(optimizedParameters, optimizedBias, nMisses) = parameterStartingPoints
                                                               // We can use parallel LINQ (PLINQ) to convert the IEnumerable
                                                               // over starting points into a parallelized query.
                                                               .AsParallel()
                                                               // By default, PLINQ may or may not actually run our query in
                                                               // parallel, depending on the capabilities of your machine.
                                                               // We can force PLINQ to actually parallelize, however, by using
                                                               // the WithExecutionMode method.
                                                               .WithExecutionMode(ParallelExecutionMode.ForceParallelism)
                                                               // Many of the same LINQ methods are defined for PLINQ queries
                                                               // as well as IEnumerable objects, so we can go on and run
                                                               // the training loop in parallel by selecting on the start point.
                                                               .Select(
                (startPoint, idxStartPoint) =>
            {
                // Since we want each start point to run on its own
                // instance of the full-state simulator, we create a new
                // instance here, using C# 8's "using var" syntax to
                // ensure that the simulator is deallocated once
                // training is complete for this start point.
                using var targetMachine = new QuantumSimulator();

                // We attach a tag to log output so that we can tell
                // each training job's messages apart.
                // To do so, we disable the default output to the console
                // and attach our own event with the index of the
                // starting point that generated each message.
                targetMachine.DisableLogToConsole();
                targetMachine.OnLog += message =>
                                       Console.WriteLine($"[{idxStartPoint}] {message}");

                // Finally, we can call the Q# entry point with the
                // samples, their labels, and our given start point.
                return(TrainHalfMoonModelAtStartPoint.Run(
                           targetMachine,
                           samples,
                           new QArray <long>(data.TrainingData.Labels),
                           new QArray <double>(startPoint)
                           ).Result);
            }
                )
                                                               // We can then gather the results back into a sequential
                                                               // (IEnumerable) collection.
                                                               .AsSequential()
                                                               // Finally, we want to minimize over the number of misses,
                                                               // returning the corresponding sequential classifier model.
                                                               // In this case, we use a handy extension method defined below
                                                               // to perform the minimization.
                                                               .MinBy(result => result.Item3);

            // After training, we can use the validation data to test the accuracy
            // of our new classifier.
            using var targetMachine = new QuantumSimulator();
            var missRate = await ValidateHalfMoonModel.Run(
                targetMachine,
                new QArray <QArray <double> >(data.ValidationData.Features.Select(vector => new QArray <double>(vector))),
                new QArray <long>(data.ValidationData.Labels),
                optimizedParameters,
                optimizedBias
                );

            System.Console.WriteLine($"Observed {100 * missRate:F2}% misclassifications.");
        }