Exemplo n.º 1
0
        private static PreferenceArray cloneAndMergeInto(PreferenceArray delegatePrefs, long itemID, long newUserID, float value)
        {
            int             num4;
            int             num   = (delegatePrefs == null) ? 0 : delegatePrefs.length();
            int             size  = num + 1;
            PreferenceArray array = new GenericItemPreferenceArray(size);

            array.setItemID(0, itemID);
            int i = 0;

            while ((i < num) && (newUserID > delegatePrefs.getUserID(i)))
            {
                i++;
            }
            for (num4 = 0; num4 < i; num4++)
            {
                array.setUserID(num4, delegatePrefs.getUserID(num4));
                array.setValue(num4, delegatePrefs.getValue(num4));
            }
            array.setUserID(i, newUserID);
            array.setValue(i, value);
            for (num4 = i + 1; num4 < size; num4++)
            {
                array.setUserID(num4, delegatePrefs.getUserID(num4 - 1));
                array.setValue(num4, delegatePrefs.getValue(num4 - 1));
            }
            return(array);
        }
Exemplo n.º 2
0
        public override int getNumUsersWithPreferenceFor(long itemID1, long itemID2)
        {
            PreferenceArray array = this.preferenceForItems.get(itemID1);

            if (array == null)
            {
                return(0);
            }
            PreferenceArray array2 = this.preferenceForItems.get(itemID2);

            if (array2 == null)
            {
                return(0);
            }
            int  num  = array.length();
            int  num2 = array2.length();
            int  num3 = 0;
            int  i    = 0;
            int  num5 = 0;
            long num6 = array.getUserID(0);
            long num7 = array2.getUserID(0);

            while (true)
            {
                if (num6 < num7)
                {
                    if (++i == num)
                    {
                        return(num3);
                    }
                    num6 = array.getUserID(i);
                }
                else if (num6 > num7)
                {
                    if (++num5 == num2)
                    {
                        return(num3);
                    }
                    num7 = array2.getUserID(num5);
                }
                else
                {
                    num3++;
                    if ((++i == num) || (++num5 == num2))
                    {
                        return(num3);
                    }
                    num6 = array.getUserID(i);
                    num7 = array2.getUserID(num5);
                }
            }
        }
Exemplo n.º 3
0
        protected override FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel)
        {
            FastIDSet set = new FastIDSet();

            foreach (long num in preferredItemIDs)
            {
                PreferenceArray array = dataModel.getPreferencesForItem(num);
                int             num2  = array.length();
                for (int i = 0; i < num2; i++)
                {
                    set.addAll(dataModel.getItemIDsFromUser(array.getUserID(i)));
                }
            }
            set.removeAll(preferredItemIDs);
            return(set);
        }
Exemplo n.º 4
0
        protected override FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel)
        {
            IEnumerator <long> enumerator = ((IEnumerable <long>)preferredItemIDs).GetEnumerator();

            if (preferredItemIDs.Length > this.maxItems)
            {
                double samplingRate = ((double)this.maxItems) / ((double)preferredItemIDs.Length);
                log.info("preferredItemIDs.Length {0}, samplingRate {1}", new object[] { preferredItemIDs.Length, samplingRate });
                enumerator = new SamplingLongPrimitiveIterator(enumerator, samplingRate);
            }
            FastIDSet possibleItemIDs = new FastIDSet();

            while (enumerator.MoveNext())
            {
                long            current = enumerator.Current;
                PreferenceArray array   = dataModel.getPreferencesForItem(current);
                int             num3    = array.length();
                if (num3 > this.maxUsersPerItem)
                {
                    FixedSizeSamplingIterator <Preference> iterator = new FixedSizeSamplingIterator <Preference>(this.maxUsersPerItem, array.GetEnumerator());
                    while (iterator.MoveNext())
                    {
                        this.addSomeOf(possibleItemIDs, dataModel.getItemIDsFromUser(iterator.Current.getUserID()));
                    }
                }
                else
                {
                    for (int i = 0; i < num3; i++)
                    {
                        this.addSomeOf(possibleItemIDs, dataModel.getItemIDsFromUser(array.getUserID(i)));
                    }
                }
            }
            possibleItemIDs.removeAll(preferredItemIDs);
            return(possibleItemIDs);
        }
Exemplo n.º 5
0
        public override double itemSimilarity(long itemID1, long itemID2)
        {
            double          num18;
            DataModel       model  = base.getDataModel();
            PreferenceArray array  = model.getPreferencesForItem(itemID1);
            PreferenceArray array2 = model.getPreferencesForItem(itemID2);
            int             num    = array.length();
            int             num2   = array2.length();

            if ((num == 0) || (num2 == 0))
            {
                return(double.NaN);
            }
            long   num3  = array.getUserID(0);
            long   num4  = array2.getUserID(0);
            int    i     = 0;
            int    num6  = 0;
            double num7  = 0.0;
            double num8  = 0.0;
            double num9  = 0.0;
            double num10 = 0.0;
            double sumXY = 0.0;
            double num12 = 0.0;
            int    n     = 0;

            while (true)
            {
                int num14 = (num3 < num4) ? -1 : ((num3 > num4) ? 1 : 0);
                if (num14 == 0)
                {
                    double num15 = array.getValue(i);
                    double num16 = array2.getValue(num6);
                    sumXY += num15 * num16;
                    num7  += num15;
                    num8  += num15 * num15;
                    num9  += num16;
                    num10 += num16 * num16;
                    double num17 = num15 - num16;
                    num12 += num17 * num17;
                    n++;
                }
                if (num14 <= 0)
                {
                    if (++i == num)
                    {
                        break;
                    }
                    num3 = array.getUserID(i);
                }
                if (num14 >= 0)
                {
                    if (++num6 == num2)
                    {
                        break;
                    }
                    num4 = array2.getUserID(num6);
                }
            }
            if (this.centerData)
            {
                double num19 = n;
                double num20 = num7 / num19;
                double num21 = num9 / num19;
                double num22 = sumXY - (num21 * num7);
                double num23 = num8 - (num20 * num7);
                double num24 = num10 - (num21 * num9);
                num18 = this.computeResult(n, num22, num23, num24, num12);
            }
            else
            {
                num18 = this.computeResult(n, sumXY, num8, num10, num12);
            }
            if (!double.IsNaN(num18))
            {
                num18 = this.normalizeWeightResult(num18, n, this.cachedNumUsers);
            }
            return(num18);
        }
Exemplo n.º 6
0
        protected override float doEstimatePreference(long theUserID, PreferenceArray preferencesFromUser, long itemID)
        {
            DataModel dataModel       = getDataModel();
            int       size            = preferencesFromUser.length();
            FastIDSet possibleItemIDs = new FastIDSet(size);

            for (int i = 0; i < size; i++)
            {
                possibleItemIDs.add(preferencesFromUser.getItemID(i));
            }
            possibleItemIDs.remove(itemID);

            List <RecommendedItem> mostSimilar = mostSimilarItems(itemID, possibleItemIDs.GetEnumerator(), neighborhoodSize, null);

            long[] theNeighborhood = new long[mostSimilar.Count() + 1];
            theNeighborhood[0] = -1;

            List <long> usersRatedNeighborhood = new List <long>();
            int         nOffset = 0;

            foreach (RecommendedItem rec in mostSimilar)
            {
                theNeighborhood[nOffset++] = rec.getItemID();
            }

            if (mostSimilar.Count != 0)
            {
                theNeighborhood[mostSimilar.Count] = itemID;
                for (int i = 0; i < theNeighborhood.Length; i++)
                {
                    PreferenceArray usersNeighborhood = dataModel.getPreferencesForItem(theNeighborhood[i]);
                    int             size1             = usersRatedNeighborhood.Count == 0 ? usersNeighborhood.length() : usersRatedNeighborhood.Count;
                    for (int j = 0; j < size1; j++)
                    {
                        if (i == 0)
                        {
                            usersRatedNeighborhood.Add(usersNeighborhood.getUserID(j));
                        }
                        else
                        {
                            if (j >= usersRatedNeighborhood.Count)
                            {
                                break;
                            }
                            long index = usersRatedNeighborhood[j];
                            if (!usersNeighborhood.hasPrefWithUserID(index) || index == theUserID)
                            {
                                usersRatedNeighborhood.Remove(index);
                                j--;
                            }
                        }
                    }
                }
            }

            double[] weights = null;
            if (mostSimilar.Count != 0)
            {
                weights = getInterpolations(itemID, theNeighborhood, usersRatedNeighborhood);
            }

            int    n               = 0;
            double preference      = 0.0;
            double totalSimilarity = 0.0;

            foreach (long jitem in theNeighborhood)
            {
                float?pref = dataModel.getPreferenceValue(theUserID, jitem);

                if (pref != null)
                {
                    double weight = weights[n];
                    preference      += pref.Value * weight;
                    totalSimilarity += weight;
                }
                n++;
            }
            return(totalSimilarity == 0.0 ? float.NaN : (float)(preference / totalSimilarity));
        }