Exemplo n.º 1
0
        public void Bug6162()
        {
            // When UncertianMeasurementSample.FitToPolynomial used Cholesky inversion of (A^T A), this inversion
            // would fail when roundoff errors would made the matrix non-positive-definite. We have now changed
            // to QR decomposition, which is more robust.

            //real data
            double[] X_axis = new double[] { 40270.65625, 40270.6569444444, 40270.6576388888, 40270.6583333332, 40270.6590277776,
                                             40270.659722222, 40270.6604166669, 40270.6611111113, 40270.6618055557, 40270.6625000001 };

            double[] Y_axis = new double[] { 246.824996948242, 246.850006103516, 245.875, 246.225006103516, 246.975006103516,
                                             247.024993896484, 246.949996948242, 246.875, 247.5, 247.100006103516 };

            UncertainMeasurementSample DataSet = new UncertainMeasurementSample();

            for (int i = 0; i < 10; i++)
            {
                DataSet.Add(X_axis[i], Y_axis[i], 1);
            }

            UncertainMeasurementFitResult DataFit = DataSet.FitToPolynomial(3);

            BivariateSample bs = new BivariateSample();

            for (int i = 0; i < 10; i++)
            {
                bs.Add(X_axis[i], Y_axis[i]);
            }
            PolynomialRegressionResult bsFit = bs.PolynomialRegression(3);

            foreach (Parameter p in bsFit.Parameters)
            {
                Console.WriteLine(p);
            }
        }
Exemplo n.º 2
0
        public void BivariatePolynomialRegressionSimple()
        {
            // Pick a simple polynomial
            Polynomial p = Polynomial.FromCoefficients(3.0, -2.0, 1.0);

            // Use it to generate a data set
            Random rng = new Random(1);
            ContinuousDistribution xDistribution     = new CauchyDistribution(1.0, 2.0);
            ContinuousDistribution errorDistribution = new NormalDistribution(0.0, 3.0);
            List <double>          xs = new List <double>(TestUtilities.CreateDataSample(rng, xDistribution, 10));
            List <double>          ys = new List <double>(xs.Select(x => p.Evaluate(x) + errorDistribution.GetRandomValue(rng)));

            PolynomialRegressionResult fit = Bivariate.PolynomialRegression(ys, xs, p.Degree);

            // Parameters should agree
            Assert.IsTrue(fit.Parameters.Count == p.Degree + 1);
            for (int k = 0; k <= p.Degree; k++)
            {
                Assert.IsTrue(fit.Coefficient(k).ConfidenceInterval(0.99).ClosedContains(p.Coefficient(k)));
            }

            // Residuals should agree
            Assert.IsTrue(fit.Residuals.Count == xs.Count);
            for (int i = 0; i < xs.Count; i++)
            {
                double z = ys[i] - fit.Predict(xs[i]).Value;
                Assert.IsTrue(TestUtilities.IsNearlyEqual(z, fit.Residuals[i]));
            }

            // Intercept is same as coefficient of x^0
            Assert.IsTrue(fit.Intercept == fit.Coefficient(0));
        }
Exemplo n.º 3
0
        public void InternetSampleDownload()
        {
            FrameTable table = DownloadFrameTable(new Uri("https://raw.githubusercontent.com/Dataweekends/zero_to_deep_learning_udemy/master/data/weight-height.csv"));
            FrameView  view  = table.WhereNotNull();

            view.AddComputedColumn("Bmi", (FrameRow r) => {
                double h = (double)r["Height"];
                double w = (double)r["Weight"];
                return(w / (h * h));
            });

            FrameView males   = view.Where("Gender", (string s) => (s == "Male"));
            FrameView females = view.Where("Gender", (string s) => (s == "Female"));

            SummaryStatistics maleSummary   = new SummaryStatistics(males["Height"].As <double>());
            SummaryStatistics femaleSummary = new SummaryStatistics(females["Height"].As <double>());

            TestResult allNormal    = view["Height"].As <double>().ShapiroFranciaTest();
            TestResult maleNormal   = males["Height"].As <double>().ShapiroFranciaTest();
            TestResult femaleNormal = females["Height"].As <double>().ShapiroFranciaTest();

            TestResult tTest  = Univariate.StudentTTest(males["Height"].As <double>(), females["Height"].As <double>());
            TestResult mwTest = Univariate.MannWhitneyTest(males["Height"].As <double>(), females["Height"].As <double>());

            LinearRegressionResult     result0 = males["Weight"].As <double>().LinearRegression(males["Height"].As <double>());
            PolynomialRegressionResult result1 = males["Height"].As <double>().PolynomialRegression(males["Weight"].As <double>(), 1);
            PolynomialRegressionResult result2 = males["Height"].As <double>().PolynomialRegression(males["Weight"].As <double>(), 2);
            PolynomialRegressionResult result3 = males["Height"].As <double>().PolynomialRegression(males["Weight"].As <double>(), 3);

            //MultiLinearRegressionResult multi = view["Weight"].As<double>().MultiLinearRegression(view["Height"].As<double>(), view["Gender"].As<string>().Select(s => (s == "Male") ? 1.0 : 0.0).ToList());
        }
Exemplo n.º 4
0
        public void BivariatePolynomialRegressionCovariance()
        {
            // do a set of polynomial regression fits
            // make sure not only that the fit parameters are what they should be, but that their variances/covariances are as claimed

            Random rng = new Random(271828);

            // define logistic parameters
            double[] a = new double[] { 0.0, -1.0, 2.0, -3.0 };

            // keep track of sample of returned a and b fit parameters
            MultivariateSample A = new MultivariateSample(a.Length);

            // also keep track of returned covariance estimates
            // since these vary slightly from fit to fit, we will average them
            SymmetricMatrix C = new SymmetricMatrix(a.Length);

            // also keep track of test statistics
            Sample F = new Sample();

            // do 100 fits
            for (int k = 0; k < 100; k++)
            {
                // we should be able to draw x's from any distribution; noise should be drawn from a normal distribution
                ContinuousDistribution xd = new CauchyDistribution();
                ContinuousDistribution nd = new NormalDistribution(0.0, 4.0);

                // generate a synthetic data set
                BivariateSample s = new BivariateSample();
                for (int j = 0; j < 20; j++)
                {
                    double x = xd.GetRandomValue(rng);
                    double y = nd.GetRandomValue(rng);
                    for (int i = 0; i < a.Length; i++)
                    {
                        y += a[i] * MoreMath.Pow(x, i);
                    }
                    s.Add(x, y);
                }

                // do the regression
                PolynomialRegressionResult r = s.PolynomialRegression(a.Length - 1);

                ColumnVector ps = r.Parameters.ValuesVector;

                // record best fit parameters
                A.Add(ps);

                // record estimated covariances
                C += r.Parameters.CovarianceMatrix;

                // record the fit statistic
                F.Add(r.F.Statistic.Value);
            }

            C = (1.0 / A.Count) * C; // allow matrix division by real numbers

            // check that mean parameter estimates are what they should be: the underlying population parameters
            for (int i = 0; i < A.Dimension; i++)
            {
                Assert.IsTrue(A.Column(i).PopulationMean.ConfidenceInterval(0.95).ClosedContains(a[i]));
            }

            // check that parameter covarainces are what they should be: the reported covariance estimates
            for (int i = 0; i < A.Dimension; i++)
            {
                for (int j = i; j < A.Dimension; j++)
                {
                    Assert.IsTrue(A.TwoColumns(i, j).PopulationCovariance.ConfidenceInterval(0.95).ClosedContains(C[i, j]));
                }
            }

            // check that F is distributed as it should be
            //Console.WriteLine(fs.KolmogorovSmirnovTest(new FisherDistribution(2, 48)).LeftProbability);
        }