Exemplo n.º 1
0
        /// <summary>
        /// Bounds in XZ space after transforming using the *inverse* transform of the inverseTransform parameter.
        /// The transformation will typically transform the vertices to graph space and this is used to
        /// figure out which tiles the add intersects.
        /// </summary>
        public override Rect GetBounds(Pathfinding.Util.GraphTransform inverseTransform)
        {
            if (this.verts == null)
            {
                RebuildMesh();
            }
            var verts = Pathfinding.Util.ArrayPool <Int3> .Claim(this.verts != null?this.verts.Length : 0);

            int[] tris;
            GetMesh(ref verts, out tris, inverseTransform);

            Rect r = new Rect();

            for (int i = 0; i < tris.Length; i++)
            {
                var p = (Vector3)verts[tris[i]];
                if (i == 0)
                {
                    r = new Rect(p.x, p.z, 0, 0);
                }
                else
                {
                    r.xMax = System.Math.Max(r.xMax, p.x);
                    r.yMax = System.Math.Max(r.yMax, p.z);
                    r.xMin = System.Math.Min(r.xMin, p.x);
                    r.yMin = System.Math.Min(r.yMin, p.z);
                }
            }

            Pathfinding.Util.ArrayPool <Int3> .Release(ref verts);

            return(r);
        }
Exemplo n.º 2
0
        /** Bounds in XZ space after transforming using the *inverse* transform of the \a inverseTranform parameter.
         * The transformation will typically transform the vertices to graph space and this is used to
         * figure out which tiles the cut intersects.
         */
        internal override Rect GetBounds(Pathfinding.Util.GraphTransform inverseTranform)
        {
            var buffers = Pathfinding.Util.ListPool <List <Vector3> > .Claim();

            GetContour(buffers);

            Rect r = new Rect();

            for (int i = 0; i < buffers.Count; i++)
            {
                var buffer = buffers[i];
                for (int k = 0; k < buffer.Count; k++)
                {
                    var p = inverseTranform.InverseTransform(buffer[k]);
                    if (k == 0)
                    {
                        r = new Rect(p.x, p.z, 0, 0);
                    }
                    else
                    {
                        r.xMax = System.Math.Max(r.xMax, p.x);
                        r.yMax = System.Math.Max(r.yMax, p.z);
                        r.xMin = System.Math.Min(r.xMin, p.x);
                        r.yMin = System.Math.Min(r.yMin, p.z);
                    }
                }
            }

            Pathfinding.Util.ListPool <List <Vector3> > .Release(ref buffers);

            return(r);
        }
Exemplo n.º 3
0
        /// <summary>Copy the mesh to the vertex and triangle buffers after the vertices have been transformed using the inverse of the inverseTransform parameter.</summary>
        /// <param name="vbuffer">Assumed to be either null or an array which has a length of zero or a power of two. If this mesh has more
        ///  vertices than can fit in the buffer then the buffer will be pooled using Pathfinding.Util.ArrayPool.Release and
        ///  a new sufficiently large buffer will be taken from the pool.</param>
        /// <param name="tbuffer">This will be set to the internal triangle buffer. You must not modify this array.</param>
        /// <param name="inverseTransform">All vertices will be transformed using the #Pathfinding.GraphTransform.InverseTransform method.
        ///  This is typically used to transform from world space to graph space.</param>
        public void GetMesh(ref Int3[] vbuffer, out int[] tbuffer, Pathfinding.Util.GraphTransform inverseTransform = null)
        {
            if (verts == null)
            {
                RebuildMesh();
            }

            if (verts == null)
            {
                tbuffer = Util.ArrayPool <int> .Claim(0);

                return;
            }

            if (vbuffer == null || vbuffer.Length < verts.Length)
            {
                if (vbuffer != null)
                {
                    Util.ArrayPool <Int3> .Release(ref vbuffer);
                }
                vbuffer = Util.ArrayPool <Int3> .Claim(verts.Length);
            }
            tbuffer = tris;

            if (useRotationAndScale)
            {
                Matrix4x4 m = Matrix4x4.TRS(tr.position + center, tr.rotation, tr.localScale * meshScale);

                for (int i = 0; i < verts.Length; i++)
                {
                    var v = m.MultiplyPoint3x4(verts[i]);
                    if (inverseTransform != null)
                    {
                        v = inverseTransform.InverseTransform(v);
                    }
                    vbuffer[i] = (Int3)v;
                }
            }
            else
            {
                Vector3 voffset = tr.position + center;
                for (int i = 0; i < verts.Length; i++)
                {
                    var v = voffset + verts[i] * meshScale;
                    if (inverseTransform != null)
                    {
                        v = inverseTransform.InverseTransform(v);
                    }
                    vbuffer[i] = (Int3)v;
                }
            }
        }
Exemplo n.º 4
0
        public void VoxelizeInput(Pathfinding.Util.GraphTransform graphTransform, Bounds graphSpaceBounds)
        {
            AstarProfiler.StartProfile("Build Navigation Mesh");

            AstarProfiler.StartProfile("Voxelizing - Step 1");

            // Transform from voxel space to graph space.
            // then scale from voxel space (one unit equals one voxel)
            // Finally add min
            Matrix4x4 voxelMatrix = Matrix4x4.TRS(graphSpaceBounds.min, Quaternion.identity, Vector3.one) * Matrix4x4.Scale(new Vector3(cellSize, cellHeight, cellSize));

            transformVoxel2Graph = new Pathfinding.Util.GraphTransform(voxelMatrix);

            // Transform from voxel space to world space
            // add half a voxel to fix rounding
            transform = graphTransform * voxelMatrix * Matrix4x4.TRS(new Vector3(0.5f, 0, 0.5f), Quaternion.identity, Vector3.one);

            int maximumVoxelYCoord = (int)(graphSpaceBounds.size.y / cellHeight);

            AstarProfiler.EndProfile("Voxelizing - Step 1");

            AstarProfiler.StartProfile("Voxelizing - Step 2 - Init");

            // Cosine of the slope limit in voxel space (some tweaks are needed because the voxel space might be stretched out along the y axis)
            float slopeLimit = Mathf.Cos(Mathf.Atan(Mathf.Tan(maxSlope * Mathf.Deg2Rad) * (cellSize / cellHeight)));

            // Temporary arrays used for rasterization
            var clipperOrig = new VoxelPolygonClipper(3);
            var clipperX1   = new VoxelPolygonClipper(7);
            var clipperX2   = new VoxelPolygonClipper(7);
            var clipperZ1   = new VoxelPolygonClipper(7);
            var clipperZ2   = new VoxelPolygonClipper(7);

            if (inputMeshes == null)
            {
                throw new System.NullReferenceException("inputMeshes not set");
            }

            // Find the largest lengths of vertex arrays and check for meshes which can be skipped
            int maxVerts = 0;

            for (int m = 0; m < inputMeshes.Count; m++)
            {
                maxVerts = System.Math.Max(inputMeshes[m].vertices.Length, maxVerts);
            }

            // Create buffer, here vertices will be stored multiplied with the local-to-voxel-space matrix
            var verts = new Vector3[maxVerts];

            AstarProfiler.EndProfile("Voxelizing - Step 2 - Init");

            AstarProfiler.StartProfile("Voxelizing - Step 2");

            // This loop is the hottest place in the whole rasterization process
            // it usually accounts for around 50% of the time
            for (int m = 0; m < inputMeshes.Count; m++)
            {
                RasterizationMesh mesh = inputMeshes[m];
                var meshMatrix         = mesh.matrix;

                // Flip the orientation of all faces if the mesh is scaled in such a way
                // that the face orientations would change
                // This happens for example if a mesh has a negative scale along an odd number of axes
                // e.g it happens for the scale (-1, 1, 1) but not for (-1, -1, 1) or (1,1,1)
                var flipOrientation = VectorMath.ReversesFaceOrientations(meshMatrix);

                Vector3[] vs         = mesh.vertices;
                int[]     tris       = mesh.triangles;
                int       trisLength = mesh.numTriangles;

                // Transform vertices first to world space and then to voxel space
                for (int i = 0; i < vs.Length; i++)
                {
                    verts[i] = transform.InverseTransform(meshMatrix.MultiplyPoint3x4(vs[i]));
                }

                int mesharea = mesh.area;

                for (int i = 0; i < trisLength; i += 3)
                {
                    Vector3 p1 = verts[tris[i]];
                    Vector3 p2 = verts[tris[i + 1]];
                    Vector3 p3 = verts[tris[i + 2]];

                    if (flipOrientation)
                    {
                        var tmp = p1;
                        p1 = p3;
                        p3 = tmp;
                    }

                    int minX = (int)(Utility.Min(p1.x, p2.x, p3.x));
                    int minZ = (int)(Utility.Min(p1.z, p2.z, p3.z));

                    int maxX = (int)System.Math.Ceiling(Utility.Max(p1.x, p2.x, p3.x));
                    int maxZ = (int)System.Math.Ceiling(Utility.Max(p1.z, p2.z, p3.z));

                    minX = Mathf.Clamp(minX, 0, voxelArea.width - 1);
                    maxX = Mathf.Clamp(maxX, 0, voxelArea.width - 1);
                    minZ = Mathf.Clamp(minZ, 0, voxelArea.depth - 1);
                    maxZ = Mathf.Clamp(maxZ, 0, voxelArea.depth - 1);

                    // Check if the mesh is completely out of bounds
                    if (minX >= voxelArea.width || minZ >= voxelArea.depth || maxX <= 0 || maxZ <= 0)
                    {
                        continue;
                    }

                    Vector3 normal;

                    int area;

                    //AstarProfiler.StartProfile ("Rasterize...");

                    normal = Vector3.Cross(p2 - p1, p3 - p1);

                    float cosSlopeAngle = Vector3.Dot(normal.normalized, Vector3.up);

                    if (cosSlopeAngle < slopeLimit)
                    {
                        area = UnwalkableArea;
                    }
                    else
                    {
                        area = 1 + mesharea;
                    }

                    clipperOrig[0] = p1;
                    clipperOrig[1] = p2;
                    clipperOrig[2] = p3;
                    clipperOrig.n  = 3;

                    for (int x = minX; x <= maxX; x++)
                    {
                        clipperOrig.ClipPolygonAlongX(ref clipperX1, 1f, -x + 0.5f);

                        if (clipperX1.n < 3)
                        {
                            continue;
                        }

                        clipperX1.ClipPolygonAlongX(ref clipperX2, -1F, x + 0.5F);

                        if (clipperX2.n < 3)
                        {
                            continue;
                        }

                        float clampZ1 = clipperX2.z[0];
                        float clampZ2 = clipperX2.z[0];
                        for (int q = 1; q < clipperX2.n; q++)
                        {
                            float val = clipperX2.z[q];
                            clampZ1 = System.Math.Min(clampZ1, val);
                            clampZ2 = System.Math.Max(clampZ2, val);
                        }

                        int clampZ1I = Mathf.Clamp((int)System.Math.Round(clampZ1), 0, voxelArea.depth - 1);
                        int clampZ2I = Mathf.Clamp((int)System.Math.Round(clampZ2), 0, voxelArea.depth - 1);

                        for (int z = clampZ1I; z <= clampZ2I; z++)
                        {
                            clipperX2.ClipPolygonAlongZWithYZ(ref clipperZ1, 1F, -z + 0.5F);

                            if (clipperZ1.n < 3)
                            {
                                continue;
                            }

                            clipperZ1.ClipPolygonAlongZWithY(ref clipperZ2, -1F, z + 0.5F);
                            if (clipperZ2.n < 3)
                            {
                                continue;
                            }

                            float sMin = clipperZ2.y[0];
                            float sMax = clipperZ2.y[0];
                            for (int q = 1; q < clipperZ2.n; q++)
                            {
                                float val = clipperZ2.y[q];
                                sMin = System.Math.Min(sMin, val);
                                sMax = System.Math.Max(sMax, val);
                            }

                            int maxi = (int)System.Math.Ceiling(sMax);

                            // Skip span if below or above the bounding box
                            if (maxi >= 0 && sMin <= maximumVoxelYCoord)
                            {
                                // Make sure mini >= 0
                                int mini = System.Math.Max(0, (int)sMin);

                                // Make sure the span is at least 1 voxel high
                                maxi = System.Math.Max(mini + 1, maxi);

                                voxelArea.AddLinkedSpan(z * voxelArea.width + x, (uint)mini, (uint)maxi, area, voxelWalkableClimb);
                            }
                        }
                    }
                }
                //AstarProfiler.EndFastProfile(0);
                //AstarProfiler.EndProfile ("Rasterize...");
            }
            AstarProfiler.EndProfile("Voxelizing - Step 2");
        }
Exemplo n.º 5
0
 internal abstract Rect GetBounds(Pathfinding.Util.GraphTransform transform);
Exemplo n.º 6
0
 /** Y coordinate of the center of the bounding box in graph space */
 internal float GetY(Pathfinding.Util.GraphTransform transform)
 {
     return(transform.InverseTransform(useRotationAndScale ? tr.TransformPoint(center) : tr.position + center).y);
 }
Exemplo n.º 7
0
 /** Y coordinate of the center of the bounding box in graph space */
 internal float GetY(Pathfinding.Util.GraphTransform transform)
 {
     return(transform.InverseTransform(cutPos + center).y);
 }