public void Destroy() { // Cancel any outstanding IO and release the OvlK. foreach (IsoTransferItem myIsoBuffer in Outstanding) { int transferred; OvlPool.WaitAndRelease(myIsoBuffer.Ovl, 0, out transferred); } Completed.Clear(); Outstanding.Clear(); foreach (IsoTransferItem myIsoBuffer in Master) { myIsoBuffer.Iso.Free(); myIsoBuffer.BufferGC.Free(); } Master.Clear(); OvlPool.Free(); }
private static void Main() { bool success; WINUSB_PIPE_INFORMATION pipeInfo; UsbK usb; USB_INTERFACE_DESCRIPTOR interfaceDescriptor; // Find and configure the device. if (!Test.ConfigureDevice(out pipeInfo, out usb, out interfaceDescriptor)) { return; } if (Test.TransferBufferSize == -1) { Test.TransferBufferSize = pipeInfo.MaximumPacketSize * 64; } #if BMFW // TODO FOR USER: Remove this block if not using benchmark firmware. // This configures devices running benchmark firmware for streaming DeviceToHost transfers. Console.WriteLine("Configuring for benchmark device.."); BM_TEST_TYPE testType = ((Test.PipeId & 0x80) > 0) ? BM_TEST_TYPE.READ : BM_TEST_TYPE.WRITE; success = Benchmark.Configure(usb, BM_COMMAND.SET_TEST, interfaceDescriptor.bInterfaceNumber, ref testType); if (!success) { Console.WriteLine("Bench_Configure failed."); } #endif if (!Test.ShowTestReady()) { goto Done; } /* In most cases, you should clear the pipe timeout policy before using asynchronous I/O. (INFINITE) * This decreases overhead in the driver and generally we managed the timeout ourselves from user code. * * Set the PIPE_TRANSFER_TIMEOUT policy to INFINITE: */ int[] pipeTimeoutMS = new[] { 0 }; usb.SetPipePolicy((byte)Test.PipeId, (int)PipePolicyType.PIPE_TRANSFER_TIMEOUT, Marshal.SizeOf(typeof(int)), pipeTimeoutMS); /* In some cases, you may want to set the RAW_IO pipe policy. This will impose more restrictions on the * allowable transfer buffer sizes but will improve performance. (See documentation for restrictions) * * Set the RAW_IO policy to TRUE: */ int[] useRawIO = new[] { 1 }; usb.SetPipePolicy((byte)Test.PipeId, (int)PipePolicyType.RAW_IO, Marshal.SizeOf(typeof(int)), useRawIO); int totalSubmittedTransfers = 0; int totalCompletedTransfers = 0; /* We need a different buffer for each MaxPendingIO slot because they will all be submitted to the driver * (outstanding) at the same time. */ byte[][] transferBuffers = new byte[Test.MaxPendingIO][]; OvlK ovlPool = new OvlK(usb.Handle, Test.MaxPendingIO, KOVL_POOL_FLAG.NONE); List <GCHandle> transferBufferGCList = new List <GCHandle>(Test.MaxPendingIO); success = true; // Start transferring data synchronously; one transfer at a time until the test limit (MaxTransfersTotal) is hit. while (success && totalCompletedTransfers < Test.MaxTransfersTotal) { KOVL_HANDLE ovlHandle; int transferred; while (success && totalSubmittedTransfers < Test.MaxTransfersTotal) { // Get the next KOVL_HANDLE if (!ovlPool.Acquire(out ovlHandle)) { // This example expects a failure of NoMoreItems when the pool has no more handles to acquire. This is // our indication that it is time to begin waiting for a completion. Debug.Assert(Marshal.GetLastWin32Error() == ErrorCodes.NoMoreItems); break; } // Get the next transfer buffer int transferBufferIndex = totalSubmittedTransfers % Test.MaxPendingIO; if (transferBuffers[transferBufferIndex] == null) { /* This index has not been allocated yet. We need a different buffer for each MaxPendingIO * slot because they will all be submitted to the driver (outstanding) at the same time. */ Console.WriteLine("Allocating transfer buffer at index:{0}", transferBufferIndex); transferBuffers[transferBufferIndex] = new byte[Test.TransferBufferSize]; // Transfer buffers should be pinned so the garbage collector cannot move the memory. transferBufferGCList.Add(GCHandle.Alloc(transferBuffers[transferBufferIndex], GCHandleType.Pinned)); } byte[] transferBuffer = transferBuffers[transferBufferIndex]; int not_used_for_async; if ((Test.PipeId & AllKConstants.USB_ENDPOINT_DIRECTION_MASK) > 0) { success = usb.ReadPipe((byte)Test.PipeId, transferBuffer, transferBuffer.Length, out not_used_for_async, ovlHandle); } else { FillMyBufferForWrite(transferBuffer, out transferred); success = usb.WritePipe((byte)Test.PipeId, transferBuffer, transferred, out not_used_for_async, ovlHandle); } if (Marshal.GetLastWin32Error() == ErrorCodes.IoPending) { success = true; totalSubmittedTransfers++; Console.WriteLine("Pending #{0:0000} {1} bytes.", totalSubmittedTransfers, transferBuffer.Length); } else { Console.WriteLine("Pending #{0:0000} failed. ErrorCode={1:X8}h", totalSubmittedTransfers, Marshal.GetLastWin32Error()); } } if (!success) { break; } // Wait for the oldest transfer to complete and release the ovlHandle to the pool so it can be re-acquired. success = ovlPool.WaitOldest(out ovlHandle, 1000, KOVL_WAIT_FLAG.RELEASE_ALWAYS, out transferred); totalCompletedTransfers++; if (success) { if ((Test.PipeId & AllKConstants.USB_ENDPOINT_DIRECTION_MASK) > 0) { ProcessMyBufferFromRead(transferBuffers[(totalCompletedTransfers - 1) % Test.MaxPendingIO], transferred); } Console.WriteLine("Complete #{0:0000} {1} bytes.", totalCompletedTransfers, transferred); } else { Console.WriteLine("Complete #{0:0000} Wait failed. ErrorCode={1:X8}h", totalCompletedTransfers, Marshal.GetLastWin32Error()); } } if (!success) { Console.WriteLine("An error occured transferring data. ErrorCode: {0:X8}h", Marshal.GetLastWin32Error()); } ovlPool.Free(); // Free the GC handles allocated for the transfer buffers foreach (GCHandle gcHandle in transferBufferGCList) { gcHandle.Free(); } Done: usb.Free(); }