Exemplo n.º 1
0
        /// <summary>
        /// Compiles the model into an executable graph
        /// </summary>
        /// <param name="optimizer">The optimization algorithm to use for training the model</param>
        /// <param name="losses">The losses for each of the outputs of the model</param>
        /// <remarks>The list of loss functions should be in order of the outputs of the model</remarks>
        public void Compile(Optimizer optimizer, IEnumerable <LossFunction> losses)
        {
            if (optimizer == null)
            {
                throw new ArgumentNullException(
                          "The optimizer must be specified",
                          nameof(optimizer));
            }

            if (losses.Count() != _outputs.Count())
            {
                throw new ArgumentException(
                          "The number of loss functions does not match the number of outputs of the model",
                          nameof(losses));
            }

            _graph = new TFGraph();

            var compilationContext = new ModelCompilationContext(_graph);

            _optimizer          = optimizer;
            _inputMapping       = new Dictionary <Input, TFOutput>();
            _outputMapping      = new Dictionary <Layer, TFOutput>();
            _placeholderMapping = new Dictionary <Layer, TFOutput>();

            var compiledLosses = new List <TFOutput>();

            var layersWithLosses = Enumerable.Zip(_outputs, losses, (layer, loss) => (layer, loss));

            // By compiling the outputs, the layers that are connected
            // to the outputs are also compiled. This goes all the way back to the inputs.
            foreach (var(layer, loss) in layersWithLosses)
            {
                var placeholder = _graph.Placeholder(TFDataType.Double, new TFShape(layer.OutputShape));
                var output      = layer.Compile(compilationContext);

                _outputMapping.Add(layer, output);
                _placeholderMapping.Add(layer, placeholder);

                var compiledLoss = loss.Compile(compilationContext, output, placeholder);

                compiledLosses.Add(compiledLoss);
            }

            foreach (var input in _inputs)
            {
                _inputMapping.Add(input, input.Configuration.Output);
            }

            _modelLoss = compiledLosses.Aggregate((left, right) => _graph.Add(left, right));
            _optimizer.Compile(compilationContext, _modelLoss, compilationContext.Parameters);

            _initializers = compilationContext.Initializers;
            _parameters   = compilationContext.Parameters;
        }