Exemplo n.º 1
0
    private void ComputeHiddenLayersProp(float[] outputsWished)
    {
        // Manage error for HiddenLayers values
        for (int k = HiddenLayerNb - 1; k >= 0; --k)
        {
            for (int i = 0; i < NeuronsPerHiddenLayer; ++i)
            {
                Neuron oneHidden  = HiddenLayers[k].Neurons[i];
                float  totalError = 0.0f;

                // Modify values of last HiddenLayer using Output values
                for (int j = 0; j < oneHidden.NextNeuronsNb; ++j)
                {
                    Neuron.Link link = oneHidden.NextLinks[j];

                    totalError += link.Error * link.Weight;
                }

                for (int j = 0; j < oneHidden.PreviousNeuronsNb; ++j)
                {
                    float       delta = totalError * oneHidden.ActivationValue * (1.0f - oneHidden.ActivationValue);
                    Neuron.Link link  = oneHidden.PreviousNeurons[j].GetLinkTowards(oneHidden);
                    link.Error = delta;
                }
            }
        }
    }
Exemplo n.º 2
0
    private void ComputeFirstOutputBackprop(float[] outputsWished)
    {
        // Manage error with Output values
        for (int i = 0; i < OutputNb; ++i)
        {
            Neuron oneOutput = OutputLayer.Neurons[i];

            // Modify values of last HiddenLayer using Output values
            for (int j = 0; j < NeuronsPerHiddenLayer; ++j)
            {
                float delta = -(outputsWished[i] - oneOutput.ActivationValue)
                              * oneOutput.ActivationValue
                              * (1.0f - oneOutput.ActivationValue);
                Neuron.Link link = HiddenLayers[HiddenLayerNb - 1].Neurons[j].GetLinkTowards(oneOutput);
                link.Error = delta;
            }
        }
    }