Exemplo n.º 1
0
        public override void OnStep(int step, int globalStep, Tensor state, Tensor action, float reward, Tensor nextState, bool done)
        {
            if (globalStep % MemoryInterval == 0)
            {
                Memory.Push(new Experience(state, action, reward, nextState, done));
            }

            if (TargetModelUpdateInterval <= 0)
            {
                throw new Exception("Target model update has to be positive.");
            }

            if (TargetModel == null)
            {
                TargetModel = Net.Clone();
            }

            if (!TargetModelUpdateOnEpisodeEnd)
            {
                if (TargetModelUpdateInterval >= 1)
                {
                    if (globalStep % (int)TargetModelUpdateInterval == 0)
                    {
                        Net.CopyParametersTo(TargetModel);
                    }
                }
                else
                {
                    Net.SoftCopyParametersTo(TargetModel, TargetModelUpdateInterval);
                }
            }
        }
Exemplo n.º 2
0
    public void NextGeneration()
    {
        UpdateBestSample();

        Net   best  = best_sample.GetComponentInChildren <NetInterface>().Mind.Clone();
        int   id    = best_sample.GetComponentInChildren <NetInterface>().Id;
        float score = best_sample.GetComponentInChildren <NetInterface>().Score;

        Destroy(samples[0]);
        InstantiateWithNetAndScore(0, best, score, id);

        Net net;

        for (int i = 1; i < Mathf.FloorToInt(NUMBER_OF_GENERATION_SAMPLES * MUTATION_PERCENTAGE); i++)
        {
            net = best.Clone();
            net.Mutate();
            Destroy(samples[i]);
            InstantiateWithNet(i, net);
        }
        for (int i = Mathf.FloorToInt(NUMBER_OF_GENERATION_SAMPLES * MUTATION_PERCENTAGE); i < NUMBER_OF_GENERATION_SAMPLES; i++)
        {
            net = new Net(
                MindConstants.NUMBER_OF_INPUT_NODES,
                MindConstants.NUMBER_OF_OUTPUT_NODES,
                MindConstants.NUMBER_OF_HIDDEN_NODES,
                MindConstants.NUMBER_OF_HIDDEN_LAYERS
                );
            net.InitializeRandom();
            Destroy(samples[i]);
            InstantiateWithNet(i, net);
        }
    }