Exemplo n.º 1
0
        public override void TrainDense(IDataset ds)
        {
            //PSet("%nsamples", ds.nSamples());
            float split      = PGetf("cv_split");
            int   mlp_cv_max = PGeti("cv_max");

            if (crossvalidate)
            {
                // perform a split for cross-validation, making sure
                // that we don't have the same sample in both the
                // test and the training set (even if the data set
                // is the result of resampling)
                Intarray test_ids = new Intarray();
                Intarray ids      = new Intarray();
                for (int i = 0; i < ds.nSamples(); i++)
                {
                    ids.Push(ds.Id(i));
                }
                NarrayUtil.Uniq(ids);
                Global.Debugf("cvdetail", "reduced {0} ids to {1} ids", ds.nSamples(), ids.Length());
                NarrayUtil.Shuffle(ids);
                int nids = (int)((1.0 - split) * ids.Length());
                nids = Math.Min(nids, mlp_cv_max);
                for (int i = 0; i < nids; i++)
                {
                    test_ids.Push(ids[i]);
                }
                NarrayUtil.Quicksort(test_ids);
                Intarray training = new Intarray();
                Intarray testing  = new Intarray();
                for (int i = 0; i < ds.nSamples(); i++)
                {
                    int id = ds.Id(i);
                    if (ClassifierUtil.Bincontains(test_ids, id))
                    {
                        testing.Push(i);
                    }
                    else
                    {
                        training.Push(i);
                    }
                }
                Global.Debugf("cvdetail", "#training {0} #testing {1}",
                              training.Length(), testing.Length());
                PSet("%ntraining", training.Length());
                PSet("%ntesting", testing.Length());
                Datasubset trs = new Datasubset(ds, training);
                Datasubset tss = new Datasubset(ds, testing);
                TrainBatch(trs, tss);
            }
            else
            {
                TrainBatch(ds, ds);
            }
        }