Exemplo n.º 1
0
        private static void sparseLogistic(Sparse <double>[] inputs, double[] doubleOutputs)
        {
            // The dataset has output labels as 4 and 2. We have to convert them
            // into negative and positive labels so they can be properly processed.
            //
            bool[] outputs = doubleOutputs.Apply(x => x == 2.0 ? false : true);

            // Create a probabilistic SVM that can output probabilities besides a decision
            var teacher = new ProbabilisticDualCoordinateDescent <Linear, Sparse <double> >()
            {
                Complexity = 1000,
                Tolerance  = 1e-5
            };

            // Use the learning algorithm to Learn
            var svm = teacher.Learn(inputs, outputs);

            // Transform the machine into a dense logistic regression:
            var lr = LogisticRegression.FromWeights(svm.ToWeights());

            // Compute the machine's answers
            bool[] svmAnswers = svm.Decide(inputs);

            // Compute the machine probability estimates:
            double[] svmProbability = svm.Probability(inputs);

            // Compute the logistic regression's answers:
            bool[] lrAnswers = lr.Decide(inputs.ToDense());

            // Compute the logistic regression probability estimates:
            double[] lrProbability = lr.Probability(inputs.ToDense());

            // They should be equal for both the SVM and the LR
        }
        public void RunTest()
        {
            double[][] input =
            {
                new double[] { 55, 0 }, // 0 - no cancer
                new double[] { 28, 0 }, // 0
                new double[] { 65, 1 }, // 0
                new double[] { 46, 0 }, // 1 - have cancer
                new double[] { 86, 1 }, // 1
                new double[] { 56, 1 }, // 1
                new double[] { 85, 0 }, // 0
                new double[] { 33, 0 }, // 0
                new double[] { 21, 1 }, // 0
                new double[] { 42, 1 }, // 1
            };

            double[] output =
            {
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1
            };

            int[] labels = output.Apply(x => x > 0 ? +1 : -1);

            var svm     = new SupportVectorMachine(inputs: 2);
            var teacher = new ProbabilisticNewtonMethod(svm, input, labels);

            teacher.Tolerance  = 1e-10;
            teacher.Complexity = 1e+10;

            Assert.IsFalse(svm.IsProbabilistic);
            double error = teacher.Run();

            Assert.IsTrue(svm.IsProbabilistic);
            Assert.AreEqual(0.2, error);

            Assert.AreEqual(0.02064511826338301, svm.SupportVectors[0][0], 1e-10);
            Assert.AreEqual(1.767889310996118, svm.SupportVectors[0][1], 1e-10);
            Assert.AreEqual(-2.4577464317497455, svm.Threshold, 1e-10);

            var regression = LogisticRegression.FromWeights(svm.ToWeights());

            double[] actual = new double[output.Length];
            for (int i = 0; i < actual.Length; i++)
            {
                actual[i] = regression.Compute(input[i]);
            }

            double ageOdds   = regression.GetOddsRatio(1); // 1.0208597028836701
            double smokeOdds = regression.GetOddsRatio(2); // 5.8584748789881331


            Assert.AreEqual(1.0208597028836701, ageOdds, 1e-4);
            Assert.AreEqual(5.8584748789881331, smokeOdds, 1e-4);

            Assert.AreEqual(-2.4577464307294092, regression.Intercept, 1e-8);
            Assert.AreEqual(-2.4577464307294092, regression.Coefficients[0], 1e-8);
            Assert.AreEqual(0.020645118265359252, regression.Coefficients[1], 1e-8);
            Assert.AreEqual(1.7678893101571855, regression.Coefficients[2], 1e-8);
        }