Exemplo n.º 1
0
        public double DiversityCivilState()
        {
            List <double> listeCount = new List <double>();

            foreach (CivilState item in Enum.GetValues(typeof(CivilState)))
            {
                listeCount.Add(this.employees.Where(x => x.civil_State == item).Count());
            }
            return(Math.Round((KernelDensity.GaussianKernel(1 / Statistics.StandardDeviation(listeCount))) * 100));
        }
Exemplo n.º 2
0
        public double DiversityDisabilities()
        {
            List <double> listeCount = new List <double>();

            foreach (Disabilities item in Enum.GetValues(typeof(Disabilities)))
            {
                listeCount.Add(this.employees.Where(x => x.disabilities == item).Count());
            }
            return(Math.Round((1 - KernelDensity.GaussianKernel(1 / Statistics.StandardDeviation(listeCount))) * 100));
        }
Exemplo n.º 3
0
        public double DiversityAge()
        {
            List <double> listeCount = new List <double>();

            foreach (Age item in Enum.GetValues(typeof(Age)))
            {
                listeCount.Add(this.employees.Where(x => x.age == item).Count());
            }


            var y = Statistics.StandardDeviation(listeCount);

            return(Math.Round((KernelDensity.GaussianKernel(1 / y)) * 100));
        }
Exemplo n.º 4
0
        public void KDETestGaussianKernelBandwidth1()
        {
            //Density of standard normal distribution at 0
            AssertHelpers.AlmostEqualRelative(0.398942280401433, KernelDensity.GaussianKernel(0), 10);

            var estimate = KernelDensity.EstimateGaussian(-3.5d, 1.0d, _testData);

            AssertHelpers.AlmostEqualRelative(0.004115405028907, estimate, 10);

            estimate = KernelDensity.EstimateGaussian(0.0d, 1.0d, _testData);
            AssertHelpers.AlmostEqualRelative(0.310485907659139, estimate, 10);

            estimate = KernelDensity.EstimateGaussian(2.0d, 1.0d, _testData);
            AssertHelpers.AlmostEqualRelative(0.099698581377801, estimate, 10);
        }