Exemplo n.º 1
0
        public static void SaveKnn(KNearestNeighbors knn)
        {
            // After we have created and learned our model, let's say we would
            // like to save it to disk. For this, we can import the Accord.IO
            // namespace at the top of our source file namespace, and then use
            // Serializer's extension method Save:

            // Save to a file called "knn.bin" in the basePath directory:
            knn.Save(Path.Combine(basePath, "knn.bin"));
        }
Exemplo n.º 2
0
        /// <summary>
        /// Classify our data using k-nearest neighbors classifer and save the model.
        /// </summary>
        /// <param name="train_data">Frame objects that we will use to train classifers.</param>
        /// <param name="test_data">Frame objects that we will use to test classifers.</param>
        /// <param name="train_label">Labels of the train data.</param>
        /// <param name="test_label">Labels of the test data.</param>
        /// <param name="Classifier_Path">Path where we want to save the classifer on the disk.</param>
        /// <param name="Classifier_Name">Name of the classifer we wnat to save.</param>
        /// <returns></returns>
        public void Knn(double[][] train_data, double[][] test_data, int[] train_label, int[] test_label, String Classifier_Path, String Classifier_Name)
        {
            KNearestNeighbors knn = new KNearestNeighbors(k: 5);

            knn.Learn(train_data, train_label);

            int    answer = knn.Decide(new double[] { 117.07004523277283, 119.9104585647583 });
            var    cm     = GeneralConfusionMatrix.Estimate(knn, test_data, test_label);
            double error  = cm.Error;

            Console.WriteLine(error);

            knn.Save(Path.Combine(Classifier_Path, Classifier_Name));
        }
 public void SaveLearnedModel()
 {
     KnnModel.Save(Path.Combine(Constants.BasePath, _experimentName + ".bin"));
 }
Exemplo n.º 4
0
 private void saveModel()
 {
     classifier.Save(modelPath);
 }
Exemplo n.º 5
0
        public void learn_string()
        {
            string basePath = NUnit.Framework.TestContext.CurrentContext.TestDirectory;

            #region doc_learn_text
            // The k-Nearest Neighbors algorithm can be used with
            // any kind of data. In this example, we will see how
            // it can be used to compare, for example, Strings.

            string[] inputs =
            {
                "Car",     // class 0
                "Bar",     // class 0
                "Jar",     // class 0

                "Charm",   // class 1
                "Chair"    // class 1
            };

            int[] outputs =
            {
                0, 0, 0,  // First three are from class 0
                1, 1,     // And next two are from class 1
            };


            // Now we will create the K-Nearest Neighbors algorithm. For this
            // example, we will be choosing k = 1. This means that, for a given
            // instance, only its nearest neighbor will be used to cast a new
            // decision.

            // In order to compare strings, we will be using Levenshtein's string distance
            var knn = new KNearestNeighbors <string>(k: 1, distance: new Levenshtein());

            // We learn the algorithm:
            knn.Learn(inputs, outputs);

            // After the algorithm has been created, we can use it:
            int answer = knn.Decide("Chars"); // answer should be 1.

            // Let's say we would like to compute the error matrix for the classifier:
            var cm = ConfusionMatrix.Estimate(knn, inputs, outputs);

            // We can use it to estimate measures such as
            double error = cm.Error;    // should be 0
            double acc   = cm.Accuracy; // should be 1
            double kappa = cm.Kappa;    // should be 1
            #endregion

            Assert.AreEqual(1, answer);
            Assert.AreEqual(0, error);
            Assert.AreEqual(1, acc);
            Assert.AreEqual(1, kappa);

#if !NO_BINARY_SERIALIZATION
            knn.Save(Path.Combine(basePath, "string_knn.bin"));

            var loaded_knn = Serializer.Load <KNearestNeighbors <string> >(Path.Combine(basePath, "string_knn.bin"));

            Assert.AreEqual(1, loaded_knn.Decide("Chars"));
            cm = ConfusionMatrix.Estimate(loaded_knn, inputs, outputs);
            Assert.AreEqual(0, cm.Error);
            Assert.AreEqual(1, cm.Accuracy);
            Assert.AreEqual(1, cm.Kappa);

            Assert.AreEqual(knn.ClassCount, loaded_knn.ClassCount);
            Assert.AreEqual(knn.Distance, loaded_knn.Distance);
            Assert.AreEqual(knn.K, loaded_knn.K);
            Assert.AreEqual(knn.NumberOfClasses, loaded_knn.NumberOfClasses);
            Assert.AreEqual(knn.NumberOfInputs, loaded_knn.NumberOfInputs);
            Assert.AreEqual(knn.NumberOfOutputs, loaded_knn.NumberOfOutputs);
            Assert.AreEqual(knn.Outputs, loaded_knn.Outputs);
            Assert.AreEqual(knn.Token, loaded_knn.Token);
#endif
        }
Exemplo n.º 6
0
        public void learn_test1()
        {
            string basePath = NUnit.Framework.TestContext.CurrentContext.TestDirectory;

            #region doc_learn
            // Create some sample learning data. In this data,
            // the first two instances belong to a class, the
            // four next belong to another class and the last
            // three to yet another.

            double[][] inputs =
            {
                // The first two are from class 0
                new double[] { -5, -2, -1 },
                new double[] { -5, -5, -6 },

                // The next four are from class 1
                new double[] {  2,  1,  1 },
                new double[] {  1,  1,  2 },
                new double[] {  1,  2,  2 },
                new double[] {  3,  1,  2 },

                // The last three are from class 2
                new double[] { 11,  5,  4 },
                new double[] { 15,  5,  6 },
                new double[] { 10,  5,  6 },
            };

            int[] outputs =
            {
                0, 0,       // First two from class 0
                1, 1, 1, 1, // Next four from class 1
                2, 2, 2     // Last three from class 2
            };


            // Now we will create the K-Nearest Neighbors algorithm. For this
            // example, we will be choosing k = 4. This means that, for a given
            // instance, its nearest 4 neighbors will be used to cast a decision.
            var knn = new KNearestNeighbors(k: 4);

            // We learn the algorithm:
            knn.Learn(inputs, outputs);

            // After the algorithm has been created, we can classify a new instance:
            int answer = knn.Decide(new double[] { 11, 5, 4 }); // answer will be 2.

            // Let's say we would like to compute the error matrix for the classifier:
            var cm = GeneralConfusionMatrix.Estimate(knn, inputs, outputs);

            // We can use it to estimate measures such as
            double error = cm.Error;    // should be
            double acc   = cm.Accuracy; // should be
            double kappa = cm.Kappa;    // should be
            #endregion

            Assert.AreEqual(2, answer);
            Assert.AreEqual(0, error);
            Assert.AreEqual(1, acc);
            Assert.AreEqual(1, kappa);

#if !NO_BINARY_SERIALIZATION
            #region doc_serialization
            // After we have created and learned our model, let's say we would
            // like to save it to disk. For this, we can import the Accord.IO
            // namespace at the top of our source file namespace, and then use
            // Serializer's extension method Save:

            // Save to a file called "knn.bin" in the basePath directory:
            knn.Save(Path.Combine(basePath, "knn.bin"));

            // To load it back from the disk, we might need to use the Serializer class directly:
            var loaded_knn = Serializer.Load <KNearestNeighbors>(Path.Combine(basePath, "knn.bin"));

            // At this point, knn and loaded_knn should be
            // two different instances of identical objects.
            #endregion

            // Make sure the loaded classifier is still working
            Assert.AreEqual(2, loaded_knn.Decide(new double[] { 11, 5, 4 }));
            cm = GeneralConfusionMatrix.Estimate(loaded_knn, inputs, outputs);
            Assert.AreEqual(0, cm.Error);
            Assert.AreEqual(1, cm.Accuracy);
            Assert.AreEqual(1, cm.Kappa);

            Assert.AreEqual(knn.ClassCount, loaded_knn.ClassCount);
            Assert.AreEqual(knn.Distance, loaded_knn.Distance);
            Assert.AreEqual(knn.K, loaded_knn.K);
            Assert.AreEqual(knn.NumberOfClasses, loaded_knn.NumberOfClasses);
            Assert.AreEqual(knn.NumberOfInputs, loaded_knn.NumberOfInputs);
            Assert.AreEqual(knn.NumberOfOutputs, loaded_knn.NumberOfOutputs);
            Assert.AreEqual(knn.Outputs, loaded_knn.Outputs);
            Assert.AreEqual(knn.Token, loaded_knn.Token);
#endif
        }