Exemplo n.º 1
0
        static void runKMeans(DistanceObj[] groups)
        {
            int numGroups = groups.Length;

            // Declaring and intializing array for K-Means
            double[][] observations = new double[numGroups][];

            for (int i = 0; i < observations.Length; i++)
            {
                observations[i]    = new double[2];
                observations[i][0] = groups[i].coords[0];
                observations[i][1] = groups[i].coords[1];
            }

            KMeans km = new KMeans(7);

            KMeansClusterCollection clusters = km.Learn(observations);

            int[] labels = clusters.Decide(observations);

            for (int i = 0; i < labels.Length; i++)
            {
                Console.WriteLine(groups[i].address + ": " + labels[i]);
            }
        }
Exemplo n.º 2
0
        public static void AddClusterInfo(ref SortedDictionary <double, RunOutput> dict)
        {
            if (dict.Count <= 3)
            {
                return;
            }

            Accord.Math.Random.Generator.Seed = 0;

            double[][] metrics = new double[dict.Count][];
            int        i       = 0;

            foreach (RunOutput t in dict.Values)
            {
                metrics[i++] = t.metricDepths.ToArray();
            }

            // Create a new K-Means algorithm
            KMeans kmeans = new KMeans(k: dict.Count / 3);

            // Compute and retrieve the data centroids
            KMeansClusterCollection clusters = kmeans.Learn(metrics);

            // Use the centroids to parition all the data
            int[] labels = clusters.Decide(metrics);

            int j = 0;

            foreach (RunOutput v in dict.Values)
            {
                v.cluster = labels[j++];
            }
        }
Exemplo n.º 3
0
 public void addPoint(int x, int y)
 {
     Double[][] d  = { new Double[] { x, y } };
     int[]      cl = clusters.Decide(d);
     Clusters[x][y] = cl[0] + 1;
     Console.WriteLine("Новая точка кластера #" + cl[0] + 1);
 }
        public void Train(List <Person> trainingPeople, int skillSetSize)
        {
            double[][] inputs = _dataPointService.GenerateDataPointsFromPeople(trainingPeople, skillSetSize);
            KMeans     kMeans = new KMeans(2);

            _clustersCollection = kMeans.Learn(inputs);

            trainingPredictions = _clustersCollection.Decide(inputs);
        }
        private int[] clusterKMeans(double[][] observations)
        {
            Accord.Math.Random.Generator.Seed = 0;
            KMeans kmeans = new KMeans(9);
            KMeansClusterCollection clusters = kmeans.Learn(observations);

            int[] labels = clusters.Decide(observations);

            return(labels);
        }
Exemplo n.º 6
0
        public bool isImageEmpty(Bitmap src)
        {
            bool            ret  = false;
            Bitmap          g    = Grayscale.CommonAlgorithms.BT709.Apply(src);
            ImageStatistics stat = new ImageStatistics(g);

            double[][] ds = { new double[] { stat.Gray.Mean, stat.Gray.Median, stat.Gray.StdDev } };
            Program.logIt(string.Format("{0},{1},{2}", ds[0][0], ds[0][1], ds[0][2]));
            int[] res = clusters.Decide(ds);
            ret = !output[res[0]];
            return(ret);
        }
Exemplo n.º 7
0
        private int[] CreateKClusters(int k, double[][] locations)
        {
            Accord.Math.Random.Generator.Seed = 0;

            // Create a new K-Means algorithm with 3 clusters
            KMeans kmeans = new KMeans(k);

            KMeansClusterCollection clusters = kmeans.Learn(locations);

            int[] labels = clusters.Decide(locations);
            return(labels);
        }
Exemplo n.º 8
0
    // Called by LandMap.GetZones (), returns number of subregions
    public int ClusterLocationsAccordKMeans(MapPoint[,] points, TerrainVerticesDatabase vertDatabase)
    {
        // K-means cluster algorithm to separate locations in the regions

        int regionId = 0;

        for (int isleId = 0; isleId < regions.Count; isleId++)
        {
            MapRegion region = regions[isleId];

            double[][] tileLocations = new double[region.turf.Count][];

            for (int i = 0; i < tileLocations.Length; i++)
            {
                tileLocations[i] = new double[3];

                TerrainVertData vertData = vertDatabase.GetVertDataFromRegionTile(region.turf[i], isleId);
                //LoggerTool.Post ("Requesting " + region.turf[i].ToString ());
                if (vertData != null)
                {
                    tileLocations[i][0] = region.turf[i].x;
                    tileLocations[i][1] = vertData.inlandPosition;
                    tileLocations[i][2] = region.turf[i].y;
                }
                else
                {
                    LoggerTool.Post("Null from VertDB for " + region.turf[i].ToString());
                    tileLocations[i][0] = 0;
                    tileLocations[i][1] = 0;
                    tileLocations[i][2] = 0;
                }
            }

            int k = InitializeNumOfK(tileLocations.Length);
            Debug.Log(k + " centroid(s)");

            KMeans kmeans = new KMeans(k);
            KMeansClusterCollection clusters = kmeans.Learn(tileLocations);

            int[] labels = clusters.Decide(tileLocations);

            Debug.Log("Number of labels (clusters) = " + labels.Length);
            for (int i = 0; i < labels.Length; i++)
            {
                points[(int)tileLocations[i][0], (int)tileLocations[i][2]].areaValue = regionId + labels[i];
            }

            regionId += k;
        }

        return(regionId);
    }
Exemplo n.º 9
0
        public void Engine(double[][] observations, int k, ref int[] labels)
        {
            Accord.Math.Random.Generator.Seed = 0;
            KMeans kmeans = new KMeans(k);

            kmeans.UseSeeding    = Seeding.Uniform;
            kmeans.MaxIterations = 0; // no limit
            KMeansClusterCollection clusters = kmeans.Learn(observations);

            double[][] centroids = kmeans.Centroids;
            labels = clusters.Decide(observations);
            double err = kmeans.Error;
        }
Exemplo n.º 10
0
        public void binary_split_new_method()
        {
            #region doc_sample1
            // Use a fixed seed for reproducibility
            Accord.Math.Random.Generator.Seed = 0;

            // Declare some data to be clustered
            double[][] input = 
            {
                new double[] { -5, -2, -1 },
                new double[] { -5, -5, -6 },
                new double[] {  2,  1,  1 },
                new double[] {  1,  1,  2 },
                new double[] {  1,  2,  2 },
                new double[] {  3,  1,  2 },
                new double[] { 11,  5,  4 },
                new double[] { 15,  5,  6 },
                new double[] { 10,  5,  6 },
            };

            // Create a new binary split with 3 clusters 
            BinarySplit binarySplit = new BinarySplit(3);

            // Learn a data partitioning using the Binary Split algorithm
            KMeansClusterCollection clustering = binarySplit.Learn(input);

            // Predict group labels for each point
            int[] output = clustering.Decide(input);

            // As a result, the first two observations should belong to the
            //  same cluster (thus having the same label). The same should
            //  happen to the next four observations and to the last three.
            #endregion

            Assert.AreEqual(output[0], output[1]);

            Assert.AreEqual(output[2], output[3]);
            Assert.AreEqual(output[2], output[4]);
            Assert.AreEqual(output[2], output[5]);

            Assert.AreEqual(output[6], output[7]);
            Assert.AreEqual(output[6], output[8]);

            Assert.AreNotEqual(output[0], output[2]);
            Assert.AreNotEqual(output[2], output[6]);
            Assert.AreNotEqual(output[0], output[6]);

            int[] labels2 = binarySplit.Clusters.Nearest(input);

            Assert.IsTrue(output.IsEqual(labels2));
        }
        /// <summary>
        ///   Initializes the Gaussian Mixture Models using K-Means
        ///   parameters as an initial parameter guess.
        /// </summary>
        ///
        private void btnInitialize_Click(object sender, EventArgs e)
        {
            // Creates and computes a new
            // K-Means clustering algorithm:

            kmeans = new KMeans(k);

            KMeansClusterCollection clustering = kmeans.Learn(observations);

            // Classify all instances in mixture data
            int[] classifications = clustering.Decide(observations);

            // Draw the classifications
            updateGraph(classifications);
        }
Exemplo n.º 12
0
        public void AccordKMeans()
        {
            Stopwatch stopwatch = Stopwatch.StartNew();

            stopwatch.Start();
            KMeans kmeans = new KMeans(50);

            double[][] v = Input.ToRowArrays();
            KMeansClusterCollection clusters = kmeans.Learn(v);

            AssignedClusters = clusters.Decide(v).ToList();
            BestClustering   = AssignedClusters;
            Centroids        = clusters.Centroids.Select(x => CreateVector.Dense(x)).ToList();
            stopwatch.Stop();
            timer = stopwatch.ElapsedTicks;
        }
Exemplo n.º 13
0
        private static double[][][] ClusterPoints(double[][] dataset, int k, KMeansClusterCollection clusters)
        {
            // points in each cluster
            double[][][] clusterData = new double[k][][];
            for (int i = 0; i < dataset.Length; i++)
            {
                int decision = clusters.Decide(dataset[i]);

                if (clusterData[decision] == null)
                {
                    clusterData[decision] = new double[][] { };
                }
                Array.Resize(ref clusterData[decision], clusterData[decision].Length + 1);
                clusterData[decision][clusterData[decision].Length - 1] = dataset[i];
            }

            return(clusterData);
        }
Exemplo n.º 14
0
        private static void splitCluster(int index)
        {
            //kmeans with k = 2 for clusters[index].members
            //if kmeansArr == 1, add group to temp list for new cluster, delete from clusters[index]
            //create new Cluster with the temp list, append to end of clusters (the for loop in findLargeClusters will adapt to it and check it later for >15
            int numGroups = clusters[index].members.Count;

            double[][] observations = new double[numGroups][];

            for (int i = 0; i < observations.Length; i++)
            {
                observations[i]    = new double[2];
                observations[i][0] = clusters[index].members[i].destination.coords[0];
                observations[i][1] = clusters[index].members[i].destination.coords[1];
            }

            KMeans km = new KMeans(2);

            KMeansClusterCollection clust = km.Learn(observations);

            int[] clustArr = clust.Decide(observations);

            //if a group is in the second of the two clusters, we will put it in a new List and delete it from the old one
            List <Group> forNewCluster = new List <Group>();

            for (int i = clustArr.Length - 1; i >= 0; i--)
            {
                if (clustArr[i] == 1)
                {
                    forNewCluster.Add(clusters[index].members[i]);
                    clusters[index].members.RemoveAt(i);
                }
            }

            Cluster newCluster = new Cluster(forNewCluster);

            //update the cluster attributes in each group for the new cluster
            clusters.Add(newCluster);
            foreach (Group g in clusters[clusters.Count() - 1].members)
            {
                g.cluster = clusters.Count() - 1;
            }
        }
Exemplo n.º 15
0
 void train()
 {
     clusters = kmeans.Learn(inputList.ToArray());
     // make a empty picture
     {
         Bitmap mask = new Bitmap(300, 300);
         using (Graphics g = Graphics.FromImage(mask))
         {
             g.FillRectangle(new SolidBrush(Color.Black), new Rectangle(0, 0, mask.Width, mask.Height));
         }
         //Bitmap g = Grayscale.CommonAlgorithms.BT709.Apply(mask);
         ImageStatistics stat = new ImageStatistics(Grayscale.CommonAlgorithms.BT709.Apply(mask));
         double[][]      ds   = { new double[] { stat.Gray.Mean, stat.Gray.Median, stat.Gray.StdDev } };
         //Program.logIt(string.Format("{0},{1},{2}", ds[0][0], ds[0][1], ds[0][2]));
         int[] res = clusters.Decide(ds);
         output[0]      = true;
         output[1]      = true;
         output[res[0]] = false;
     }
 }
        static void Main(string[] args)
        {
            // sample input
            var sampleSet = new double[][]
            {
                new double[] { 1, 9 },
                new double[] { 2, 8 },
                new double[] { 3, 7 },
                new double[] { 4, 6 },
                new double[] { 5, 5 }
            };

            KMeans kmeans = new KMeans(2);
            KMeansClusterCollection clusters = kmeans.Learn(sampleSet);

            Console.WriteLine("\n\n* Clusters: {0}", String.Join(",", clusters.Decide(sampleSet)));

            Console.WriteLine("\n\n\n\nDONE!!");
            Console.ReadKey();
        }
Exemplo n.º 17
0
        //sets the values in kmeansArr[]
        public static void runKMeans(ref Group[] gs)
        {
            int numGroups = gs.Count();

            // Declaring and intializing array for K-Means
            double[][] observations = new double[numGroups][];

            for (int i = 0; i < observations.Length; i++)
            {
                observations[i]    = new double[2];
                observations[i][0] = gs[i].destination.coords[0];
                observations[i][1] = gs[i].destination.coords[1];
            }

            int    numClusters = (gs.Count() / 6) + 1; //THIS WHAT WE WANT?
            KMeans km          = new KMeans(numClusters);

            KMeansClusterCollection clust = km.Learn(observations);

            kmeansArr = clust.Decide(observations);
        }
Exemplo n.º 18
0
    // Called by LandMap.GetZones (), returns number of subregions
    public int ClusterLocationsAccordKMeans(MapPoint[,] points)
    {
        // K-means cluster algorithm to separate locations in the regions

        int regionId = 0;

        for (int isleId = 0; isleId < regions.Count; isleId++)
        {
            MapRegion region = regions[isleId];

            double[][] tileLocations = new double[region.turf.Count][];

            for (int i = 0; i < tileLocations.Length; i++)
            {
                tileLocations[i]    = new double[2];
                tileLocations[i][0] = region.turf[i].x;
                tileLocations[i][1] = region.turf[i].y;
            }

            int k = InitializeNumOfK(region.turf.Count);
            Debug.Log(k + " centroid(s)");

            KMeans kmeans = new KMeans(k);
            KMeansClusterCollection clusters = kmeans.Learn(tileLocations);

            int[] labels = clusters.Decide(tileLocations);

            Debug.Log("Number of labels (clusters) = " + labels.Length);
            for (int i = 0; i < labels.Length; i++)
            {
                points[(int)tileLocations[i][0], (int)tileLocations[i][1]].areaValue = regionId + labels[i];
            }

            regionId += k;
        }

        return(regionId);
    }
Exemplo n.º 19
0
        /**
         * Get related post for each post
         * Use k-means cluster algorithm
         */
        public void PostetsRelatedAi()
        {
            // Get all posts from db
            var posts = (from p in db.Posts
                         where p.Content.Length > 50 // Avoid uneccesary outliers
                         select p).ToList();

            // Create Array of all posts content
            string[] documents = (from p in db.Posts
                                  where p.Content.Length > 50 // Avoid uneccesary outliers
                                  select p.Content).ToArray();

            ///Apply TF*IDF on the documents and get the resulting vectors.
            double[][] inputs = TFIDFEX.TFIDF.Transform(documents);
            inputs = TFIDFEX.TFIDF.Normalize(inputs);

            // Create a new K-Means algorithm with Posts/2 clusters (create couples)
            KMeans kmeans = new KMeans(Convert.ToInt32(posts.Count() / 2));

            // Compute the algorithm, retrieving an integer array
            //  containing the labels for each of the observations
            KMeansClusterCollection clusters = kmeans.Learn(inputs);

            int[] labels = clusters.Decide(inputs);


            // Create more handy list of clusters and their vectors
            var clustersList = new List <List <int> >();

            for (int j = 0; j < Convert.ToInt32(posts.Count() / 2); j++)
            {
                clustersList.Add(labels.Select((s, i) => new { i, s })
                                 .Where(t => t.s == j)
                                 .Select(t => t.i)
                                 .ToList());
            }

            // Adjust all posts and thier related according to clustering results
            foreach (var clusetr in clustersList)
            {
                // Handle clusters with 2 and more vectors
                if (clusetr.Count() >= 2)
                {
                    for (int i = 1; i < clusetr.Count(); i++)
                    {
                        // Attach each post in the cluster to it's neighbor
                        posts[clusetr[i - 1]].relatedPost = posts[clusetr[i]].Title;
                    }
                    // Attach the last post to the first one in the list
                    posts[clusetr.Last()].relatedPost = posts[clusetr.First()].Title;
                }
                // Handle clusters with only one vector
                else if (clusetr.Count() > 0)
                {
                    // In case matching not found
                    posts[clusetr.First()].relatedPost = null;
                }
            }

            // Update Changes in DB
            foreach (var p in posts)
            {
                db.Entry(p).State = EntityState.Modified;
            }
            db.SaveChanges();
        }
Exemplo n.º 20
0
        public void dayWorkSchedule(DateTime date)
        {
            Func <WorkSchedule, bool> predicat        = (w => w.workSchedule_date == date);
            List <WorkSchedule>       workSchedules   = selectWorkSchedule(predicat);
            List <Distributors>       alldistributors = new List <Distributors>();
            List <Distributors>       ezerList        = new List <Distributors>();

            foreach (WorkSchedule item in workSchedules)
            {
                ezerList = selectDistributors(d => d.distributors_id == item.distributor_id);
                if (ezerList.Count != 1)
                {
                    throw new Exception("שגיאה בחיפוש אחרי מחלק זה");
                }
                alldistributors.Add(ezerList[0]);
            }

            List <Recipients> allrecipients = recipientsPackageByDay(date);

            double[][] Coordinates = new double[allrecipients.Count][];
            int        i           = 0;

            foreach (Recipients item in allrecipients)
            {
                Coordinates[i] = getLatLongFromAddress(item.recipients_address);
                i++;
            }

            // Create a new K-Means algorithm with 3 clusters
            KMeans kmeans = new KMeans(3);

            // Compute the algorithm, retrieving an integer array
            //  containing the labels for each of the observations
            KMeansClusterCollection clusters = kmeans.Learn(Coordinates);

            // As a result, the first two observations should belong to the
            //  same cluster (thus having the same label). The same should
            //  happen to the next four observations and to the last three.
            int[] labels = clusters.Decide(Coordinates);

            List <Recipients> group0 = new List <Recipients>();
            List <Recipients> group1 = new List <Recipients>();
            List <Recipients> group2 = new List <Recipients>();

            for (int k = 0; k < labels.Length; k++)
            {
                if (labels[k] == 0)
                {
                    group0.Add(allrecipients[k]);
                }
                if (labels[k] == 1)
                {
                    group1.Add(allrecipients[k]);
                }
                if (labels[k] == 2)
                {
                    group2.Add(allrecipients[k]);
                }
            }

            double lat = 0; double lon = 0;

            double[] d0 = new double[2];
            double[] d1 = new double[2];
            double[] d2 = new double[2];
            foreach (var item in group0)
            {
                d0   = getLatLongFromAddress(item.recipients_address);
                lat += d0[0];
                lon += d0[1];
            }
            d0[0] = lat / group0.Count;
            d0[1] = lon / group0.Count;
            lat   = 0; lon = 0;
            foreach (var item in group1)
            {
                d1   = getLatLongFromAddress(item.recipients_address);
                lat += d1[0];
                lon += d1[1];
            }
            d1[0] = lat / group1.Count;
            d1[1] = lon / group1.Count;
            lat   = 0; lon = 0;
            foreach (var item in group2)
            {
                d2   = getLatLongFromAddress(item.recipients_address);
                lat += d2[0];
                lon += d2[1];
            }
            d2[0] = lat / group2.Count;
            d2[1] = lon / group2.Count;
            // double[] d0 = getLatLongFromAddress(group0[0].recipients_address);
            // double[] d1 = getLatLongFromAddress(group1[0].recipients_address);
            // double[] d2 = getLatLongFromAddress(group2[0].recipients_address);

            double[,] distance = new double[3, 3];
            for (i = 0; i < 3; i++)
            {
                double[] d3 = getLatLongFromAddress(alldistributors[i].distributors_address);
                for (int j = 0; j < 3; j++)
                {
                    if (j == 0)
                    {
                        distance[i, j] = dalImp.addressCalculations.calculateDistance(d0, d3);
                    }
                    if (j == 1)
                    {
                        distance[i, j] = dalImp.addressCalculations.calculateDistance(d1, d3);
                    }
                    if (j == 2)
                    {
                        distance[i, j] = dalImp.addressCalculations.calculateDistance(d2, d3);
                    }
                }
            }
            int [,] minIndex = new int[3, 3];
            for (i = 0; i < 3; i++)
            {
                for (int j = 0; j < 3; j++)
                {
                    minIndex[i, j] = findMinDist(distance[i, 0], distance[i, 1], distance[i, 2], j);
                }
            }

            if ((minIndex[0, 0] != minIndex[2, 0]) && (minIndex[0, 0] != minIndex[1, 0]) && (minIndex[2, 0] != minIndex[1, 0]))
            {
                if (minIndex[0, 0] == 0)
                {
                    UpdateWorkSchedule(new WorkSchedule(alldistributors[0].distributors_id, date, group0));
                    if (minIndex[1, 0] == 1)
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[1].distributors_id, date, group1));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[2].distributors_id, date, group2));
                    }
                    else if (minIndex[1, 0] == 2)
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[1].distributors_id, date, group2));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[2].distributors_id, date, group1));
                    }
                }
                else if (minIndex[0, 0] == 1)
                {
                    UpdateWorkSchedule(new WorkSchedule(alldistributors[0].distributors_id, date, group1));
                    if (minIndex[1, 0] == 0)
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[1].distributors_id, date, group0));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[2].distributors_id, date, group2));
                    }
                    else if (minIndex[1, 0] == 2)
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[1].distributors_id, date, group2));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[2].distributors_id, date, group0));
                    }
                }
                else if (minIndex[0, 0] == 2)
                {
                    UpdateWorkSchedule(new WorkSchedule(alldistributors[0].distributors_id, date, group2));
                    if (minIndex[1, 0] == 0)
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[1].distributors_id, date, group0));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[2].distributors_id, date, group1));
                    }
                    else if (minIndex[1, 0] == 1)
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[1].distributors_id, date, group1));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[2].distributors_id, date, group0));
                    }
                }
            }
            else
            {
                if ((minIndex[0, 0] == minIndex[2, 0]) && (minIndex[0, 0] == minIndex[1, 0]) && (minIndex[2, 0] == minIndex[1, 0]))
                {
                    UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[0, 0]].distributors_id, date, group0));
                    if ((minIndex[1, 1] == minIndex[2, 1]))
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[1, 1]].distributors_id, date, group1));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[2, 2]].distributors_id, date, group2));
                    }
                    else
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[1, 1]].distributors_id, date, group1));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[2, 1]].distributors_id, date, group2));
                    }
                }
                else
                {
                    int place;
                    if (minIndex[1, 0] == minIndex[2, 0])
                    {
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[0, 0]].distributors_id, date, group0));
                        place = minIndex[1, 1] + minIndex[1, 1] % 3;
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[1, 0]].distributors_id, date, group1));
                        UpdateWorkSchedule(new WorkSchedule(alldistributors[place].distributors_id, date, group2));
                    }
                    else
                    {
                        if (minIndex[0, 0] == minIndex[2, 0])
                        {
                            UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[1, 0]].distributors_id, date, group1));
                            place = minIndex[0, 0] + minIndex[1, 0] % 3;
                            UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[0, 0]].distributors_id, date, group1));
                            UpdateWorkSchedule(new WorkSchedule(alldistributors[place].distributors_id, date, group2));
                        }
                        else
                        {
                            UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[2, 0]].distributors_id, date, group2));
                            place = minIndex[0, 0] + minIndex[2, 0] % 3;
                            UpdateWorkSchedule(new WorkSchedule(alldistributors[minIndex[1, 1]].distributors_id, date, group0));
                            UpdateWorkSchedule(new WorkSchedule(alldistributors[place].distributors_id, date, group1));
                        }
                    }
                }
            }
        }
Exemplo n.º 21
0
        public void learn_test()
        {
            #region doc_learn
            Accord.Math.Random.Generator.Seed = 0;

            // Declare some observations
            double[][] observations =
            {
                new double[] { -5, -2, -1 },
                new double[] { -5, -5, -6 },
                new double[] {  2,  1,  1 },
                new double[] {  1,  1,  2 },
                new double[] {  1,  2,  2 },
                new double[] {  3,  1,  2 },
                new double[] { 11,  5,  4 },
                new double[] { 15,  5,  6 },
                new double[] { 10,  5,  6 },
            };

            double[][] orig = observations.MemberwiseClone();

            // Create a new K-Means algorithm with 3 clusters
            BalancedKMeans kmeans = new BalancedKMeans(3)
            {
                // Note: in balanced k-means the chances of the algorithm oscillating
                // between two solutions increases considerably. For this reason, we
                // set a max-iterations limit to avoid iterating indefinitely.
                MaxIterations = 100
            };

            // Compute the algorithm, retrieving an integer array
            //  containing the labels for each of the observations
            KMeansClusterCollection clusters = kmeans.Learn(observations);

            // As a result, the first two observations should belong to the
            //  same cluster (thus having the same label). The same should
            //  happen to the next four observations and to the last three.
            int[] labels = clusters.Decide(observations);

            #endregion

            Assert.AreEqual(labels[0], labels[1]);

            Assert.AreEqual(labels[2], labels[3]);
            Assert.AreEqual(labels[2], labels[4]);
            Assert.AreEqual(labels[2], labels[5]);

            Assert.AreEqual(labels[6], labels[7]);
            Assert.AreEqual(labels[6], labels[8]);

            Assert.AreNotEqual(labels[0], labels[2]);
            Assert.AreNotEqual(labels[2], labels[6]);
            Assert.AreNotEqual(labels[0], labels[6]);

            int[] labels2 = kmeans.Clusters.Decide(observations);
            Assert.IsTrue(labels.IsEqual(labels2));

            // the data must not have changed!
            Assert.IsTrue(orig.IsEqual(observations));

            var c = new KMeansClusterCollection.KMeansCluster[clusters.Count];
            int i = 0;
            foreach (var cluster in clusters)
            {
                c[i++] = cluster;
            }

            for (i = 0; i < c.Length; i++)
            {
                Assert.AreSame(c[i], clusters[i]);
            }
        }
        public void Test(List <Person> testingPeople, int skillSetSize)
        {
            var inputs = _dataPointService.GenerateDataPointsFromPeople(testingPeople, skillSetSize);

            testPredictions = _clustersCollection.Decide(inputs);
        }
        /// <summary>
        ///     Computes the silhouette width for the given set of clusters and observations.
        /// </summary>
        /// <param name="clusters">The clusters in the dataset.</param>
        /// <param name="observations">The observation vectors.</param>
        /// <param name="isTwoDimensionalObservations">
        ///     Indicates whether or not the observation vector consists of flattened,
        ///     two-dimensioal observations (which is how agent trajectories are stored), prompting special consideration for
        ///     euclidean distasnce calculation.
        /// </param>
        /// <returns>The silhouette width for the given set of clusters and observations.</returns>
        private static double ComputeSilhouetteWidth(KMeansClusterCollection clusters, double[][] observations,
                                                     bool isTwoDimensionalObservations)
        {
            var    lockObj = new object();
            double totalSilhouetteWidth = 0;

            // Get cluster assignments for all of the observations
            var clusterAssignments = clusters.Decide(observations);

            Parallel.For(0, observations.Length, observationIdx =>
            {
                double obsIntraclusterDissimilarity = 0;

                // Get the cluster assignment of the current observation
                var curObsClusterAssignment = clusterAssignments[observationIdx];

                // Only add observation silhouette width if it is NOT the sole member of its assigned cluster
                if (clusterAssignments.Count(ca => ca == curObsClusterAssignment) > 1)
                {
                    // Setup list to hold average distance from current observation to every other neighboring cluster
                    var neighboringClusterDistances = new List <double>(clusters.Count);

                    for (var clusterIdx = 0; clusterIdx < clusters.Count; clusterIdx++)
                    {
                        // Handle the case where the current cluster is the cluster of which the observation is a member
                        if (clusterIdx == curObsClusterAssignment)
                        {
                            // Sum the distance between current observation and every other observation in the same cluster
                            for (var caIdx = 0; caIdx < clusterAssignments.Length; caIdx++)
                            {
                                if (curObsClusterAssignment == clusterAssignments[caIdx])
                                {
                                    obsIntraclusterDissimilarity +=
                                        isTwoDimensionalObservations
                                            ? ComputeEuclideanTrajectoryDifference(observations[observationIdx],
                                                                                   observations[caIdx])
                                            : ComputeEuclideanObservationDifference(observations[observationIdx],
                                                                                    observations[caIdx]);
                                }
                            }
                        }
                        // Otherwise, handle the case where we're on a neighboring cluster
                        else
                        {
                            // Create new variable to hold sum of dissimilarities between observation and
                            // neighboring cluster observations
                            double curObsNeighboringClusterDissimilarity = 0;

                            // Sum the distance between current observation and cluster centroids to which
                            // the current observation is NOT assigned
                            for (var caIdx = 0; caIdx < clusterAssignments.Length; caIdx++)
                            {
                                if (curObsClusterAssignment != clusterAssignments[caIdx])
                                {
                                    curObsNeighboringClusterDissimilarity +=
                                        isTwoDimensionalObservations
                                            ? ComputeEuclideanTrajectoryDifference(observations[observationIdx],
                                                                                   observations[caIdx])
                                            : ComputeEuclideanObservationDifference(observations[observationIdx],
                                                                                    observations[caIdx]);
                                }
                            }

                            // Compute the average intercluster dissimilarity for the current neighboring
                            // cluster and add to the list of average neighboring cluster distances
                            neighboringClusterDistances.Add(curObsNeighboringClusterDissimilarity /
                                                            clusterAssignments.Count(ca => ca == clusterIdx));
                        }
                    }

                    // Compute the average intracluster dissimilarity (local variance)
                    obsIntraclusterDissimilarity = obsIntraclusterDissimilarity /
                                                   clusterAssignments.Count(ca => ca == curObsClusterAssignment);

                    // Get the minimum intercluster dissimilarity (0 if there are no centroid differences)
                    var obsInterClusterDissimilarity = neighboringClusterDistances.Any()
                        ? neighboringClusterDistances.Min()
                        : 0;

                    // Compute the silhouette width for the current observation
                    // If its the only point in the cluster, then the silhouette width is 0
                    var curSilhouetteWidth = Math.Abs(obsIntraclusterDissimilarity) < 0.0000001
                        ? 0
                        : (obsInterClusterDissimilarity -
                           obsIntraclusterDissimilarity) /
                                             Math.Max(obsIntraclusterDissimilarity,
                                                      obsInterClusterDissimilarity);

                    lock (lockObj)
                    {
                        // Add the silhoutte width for the current observation
                        totalSilhouetteWidth += curSilhouetteWidth;
                    }
                }
            });

            // Return the silhoutte width
            return(totalSilhouetteWidth / observations.Length);
        }
Exemplo n.º 24
0
        /// <summary>
        /// This is the method that actually does the work.
        /// </summary>
        /// <param name="DA">The DA object is used to retrieve from inputs and store in outputs.</param>
        protected override void SolveInstance(IGH_DataAccess DA)
        {
            int  i, j, k;
            bool IsPointData = false;

            GH_Structure <IGH_Goo>          data = new GH_Structure <IGH_Goo>();
            GH_Structure <IGH_GeometricGoo> geo  = new GH_Structure <IGH_GeometricGoo>();
            List <int> numCluster = new List <int>();

            if (!DA.GetDataTree(0, out data))
            {
                return;
            }
            if (!DA.GetDataTree(1, out geo))
            {
                return;
            }
            if (!DA.GetDataList(2, numCluster))
            {
                return;
            }

            data.Simplify(GH_SimplificationMode.CollapseAllOverlaps);
            DataTree <IGH_Goo>          outputData      = new DataTree <IGH_Goo>();
            DataTree <IGH_GeometricGoo> outputGeo       = new DataTree <IGH_GeometricGoo>();
            DataTree <Point3d>          outputCentroids = new DataTree <Point3d>();

            for (i = 0; i < data.Branches.Count; i++)
            {
                double[] x = new double[data.Branches[i].Count];
                double[] y = new double[data.Branches[i].Count];
                double[] z = new double[data.Branches[i].Count];

                for (j = 0; j < data.Branches[i].Count; j++)
                {
                    if (data.Branches[i][j] is GH_Point)
                    {
                        IsPointData = true;
                        GH_Point target = new GH_Point();

                        if (GH_Convert.ToGHPoint(data.Branches[i][j], GH_Conversion.Both, ref target))
                        {
                            x[j] = target.Value.X;
                            y[j] = target.Value.Y;
                            z[j] = target.Value.Z;
                        }
                    }
                    else
                    {
                        break;
                    }
                }
                if (IsPointData)
                {
                    List <double[]> datalist = new List <double[]>
                    {
                        x,
                        y,
                        z
                    };
                    double[][] _data = ArrayConvert.To2DArray(datalist);

                    KMeans m = new KMeans(numCluster[i]);
                    KMeansClusterCollection cluster = m.Learn(_data);

                    int[]      labels    = cluster.Decide(_data);
                    double[][] centroids = m.Centroids;

                    for (j = 0; j < data.Branches[i].Count; j++)
                    {
                        GH_Path path = new GH_Path(i, labels[j]);
                        outputData.Add(data.Branches[i][j], path);
                        outputGeo.Add(geo.Branches[i][j], path);
                    }

                    for (k = 0; k < centroids.Length; k++)
                    {
                        outputCentroids.Add(new Point3d(centroids.ElementAt(k).ElementAt(0), centroids.ElementAt(k).ElementAt(1), centroids.ElementAt(k).ElementAt(2)), new GH_Path(k));
                    }
                }
                else
                {
                    break;
                }
            }

            if (!IsPointData)
            {
                GH_Path oldPath        = new GH_Path();
                GH_Path newPath        = new GH_Path();
                int     DataGroupCount = 0;

                for (i = 0; i < data.PathCount; i++)
                {
                    if (data.Paths[i].Indices.Length == 1)
                    {
                        DataGroupCount = 1;
                        break;
                    }
                    else
                    {
                        int[] pp = new int[data.Paths[i].Indices.Length - 1];

                        for (j = 0; j < data.Paths[i].Indices.Length - 1; j++)
                        {
                            pp[j] = data.Paths[i].Indices[j];
                        }
                        newPath.Indices = pp;

                        if (newPath != oldPath)
                        {
                            DataGroupCount++;
                            oldPath = newPath;
                        }
                        newPath = new GH_Path();
                    }
                }

                for (i = 0; i < DataGroupCount; i++)
                {
                    List <double[]> datalist = new List <double[]>();

                    for (j = 0; j < data.Branches.Count / DataGroupCount; j++)
                    {
                        double[] values = new double[data.Branches[DataGroupCount * i + j].Count];

                        for (k = 0; k < data.Branches[DataGroupCount * i + j].Count; k++)
                        {
                            if (data.Branches[DataGroupCount * i + j][k] is GH_Number)
                            {
                                if (GH_Convert.ToDouble(data.Branches[DataGroupCount * i + j][k], out double value, GH_Conversion.Both))
                                {
                                    values[k] = value;
                                }
                            }
                            else
                            {
                                break;
                            }
                        }
                        datalist.Add(values);
                    }
                    double[][] _data = ArrayConvert.ToDoubleArray(datalist);

                    KMeans m = new KMeans(numCluster[0]);
                    KMeansClusterCollection cluster = m.Learn(_data);

                    int[] labels = cluster.Decide(_data);

                    for (j = 0; j < labels.Length; j++)
                    {
                        List <IGH_Goo>          numbers = new List <IGH_Goo>();
                        List <IGH_GeometricGoo> geos    = new List <IGH_GeometricGoo>();

                        for (k = 0; k < data.Branches[DataGroupCount * i + j].Count; k++)
                        {
                            numbers.Add(data.Branches[DataGroupCount * i + j][k]);
                            geos.Add(geo.Branches[DataGroupCount * i + j][k]);
                        }

                        GH_Path path = new GH_Path(i, j, labels[j]);
                        outputData.AddRange(numbers, path);
                        outputGeo.AddRange(geos, path);
                    }
                }
            }
            DA.SetDataTree(0, outputData);
            DA.SetDataTree(1, outputGeo);
            DA.SetDataTree(2, outputCentroids);
        }
Exemplo n.º 25
0
        public void objectClustering()
        {
            int applyClusterNum = clusterNum;

            if (applyClusterNum > objectidList.Count)
            {
                applyClusterNum = objectidList.Count;
            }
            var kmeans = new KMeans(k: applyClusterNum);

            double[][] points = new double[objectidList.Count][];

            for (int i = 0; i < objectidList.Count; i++)
            {
                int id = objectidList[i];
                points[i] = ObjList[idxbyObjid[id]].getStartingPoint();
            }
            KMeansClusterCollection clusters = kmeans.Learn(points);

            int[] output = clusters.Decide(points);

            setStartingGroup();
            int maxClusterLength = objectidList.Count / applyClusterNum;

            for (int i = 0; i < objectidList.Count; i++)
            {
                int id = objectidList[i];
                //startingGroup[output[i]].Add(id);

                if (startingGroup[output[i]].idList.Count < maxClusterLength)
                {
                    startingGroup[output[i]].Add(id);
                }
                else
                {
                    for (int j = output[i]; j < applyClusterNum + output[i]; j++)
                    {
                        if (startingGroup[(j + 1) % applyClusterNum].idList.Count < maxClusterLength)
                        {
                            startingGroup[(j + 1) % applyClusterNum].Add(id);
                            break;
                        }
                    }
                }
                //^
            }

            //sort
            int maxFrameLength = 0;

            for (int k = 0; k < startingGroup.Count; k++)
            {
                startingGroup[k].sort(ref ObjList, ref idxbyObjid);
                int curFrameLength = startingGroup[k].getFrameLength();
                if (maxFrameLength < curFrameLength)
                {
                    maxFrameLength = curFrameLength;
                }
            }
            //set maxFrmae
            //MessageBox.Show(overlayFrameNum.ToString());
            outputFrameNum = trackingBar.Maximum = maxFrameLength - 1;
            if (videoInfo3Flag == true)
            {
                strVideoInfo3 += "\nresult Frame: " + outputFrameNum;
            }
            videoInfo3Flag       = false;
            labelVideoInfo3.Text = strVideoInfo3;
            labelProgress.Text   = "Detection 100%\nTracking 100%\nOverlay 100%";

            int min = outputFrameNum / analysisFPS / 60;
            int sec = outputFrameNum / analysisFPS % 60;

            labelEndTime.Text = min.ToString("00") + ":" + sec.ToString("00");
        }
Exemplo n.º 26
0
        /// <summary>
        ///     Computes the silhouette width for the given set of clusters and observations.
        /// </summary>
        /// <param name="clusters">The clusters in the dataset.</param>
        /// <param name="observations">The observation vectors.</param>
        /// <returns>The silhouette width for the given set of clusters and observations.</returns>
        private static double ComputeSilhouetteWidth(KMeansClusterCollection clusters, double[][] observations)
        {
            Object lockObj = new object();
            double totalSilhouetteWidth = 0;

            // Get cluster assignments for all of the observations
            int[] clusterAssignments = clusters.Decide(observations);

            Parallel.For(0, observations.Length, observationIdx =>
            {
                double obsIntraclusterDissimilarity = 0;
                double obsInterClusterDissimilarity = 0;

                // Sum the distance between current observation and every other observation in the same cluster
                for (int caIdx = 0; caIdx < clusterAssignments.Length; caIdx++)
                {
                    if (clusterAssignments[caIdx] == clusterAssignments[observationIdx])
                    {
                        obsIntraclusterDissimilarity +=
                            ComputeEuclideanTrajectoryDifference(observations[observationIdx], observations[caIdx]);
                    }
                }

                // Compute the average intracluster dissimilarity (local variance)
                obsIntraclusterDissimilarity = obsIntraclusterDissimilarity/
                                               clusterAssignments.Where(ca => ca == clusterAssignments[observationIdx])
                                                   .Count();

                // Setup list to hold distance from current observation to every other cluster centroid
                List<double> centroidDistances = new List<double>(clusters.Count);

                // Sum the distance between current observation and cluster centroids to which the current
                // observation is NOT assigned
                for (int idx = 0; idx < clusters.Count; idx++)
                {
                    // Only compute distance when observation is not assigned to the current cluster
                    if (idx != clusterAssignments[observationIdx])
                    {
                        centroidDistances.Add(ComputeEuclideanTrajectoryDifference(observations[observationIdx],
                            clusters[idx].Centroid));
                    }
                }

                // Get the minimum intercluster dissimilarity (0 if there are no centroid differences)
                obsInterClusterDissimilarity = centroidDistances.Any() ? centroidDistances.Min() : 0;

                // Add the silhoutte width for the current observation
                var curSilhouetteWidth = (Math.Abs(obsIntraclusterDissimilarity) < 0.0000001 &&
                                          Math.Abs(obsInterClusterDissimilarity) < 0.0000001)
                    ? 0
                    : (obsInterClusterDissimilarity -
                       obsIntraclusterDissimilarity)/
                      Math.Max(obsIntraclusterDissimilarity,
                          obsInterClusterDissimilarity);

                lock (lockObj)
                {
                    totalSilhouetteWidth += curSilhouetteWidth;
                }
            });

            // Return the silhoutte width
            return totalSilhouetteWidth/observations.Length;
        }
Exemplo n.º 27
0
        protected override void SolveInstance(IGH_DataAccess DA)
        {
            int n = 0;

            DA.GetData(0, ref n);

            List <List <double> > data = new List <List <double> >();

            for (int i = 2; i < Params.Input.Count; i++)
            {
                List <double> d = new List <double>();
                DA.GetDataList(i, d);
                if (d.Count > 0)
                {
                    data.Add(d);
                }
            }

            // Declare some observations
            double[][] observations = new double[data[0].Count][];

            for (int i = 0; i < data[0].Count; i++)
            {
                List <double> num = new List <double>();
                for (int j = 0; j < data.Count; j++)
                {
                    num.Add(data[j][i]);
                }
                observations[i] = num.ToArray();
            }

            //Get Weights
            List <double> weights = new List <double>();

            DA.GetDataList(1, weights);

            if (weights.Count != data[0].Count)
            {
                weights = Enumerable.Repeat(1.0, data[0].Count).ToList();
            }


            //Seed
            Accord.Math.Random.Generator.Seed = 0;

            // Create a new K-Means algorithm with n clusters
            Accord.MachineLearning.KMeans kmeans = new Accord.MachineLearning.KMeans(n);

            KMeansClusterCollection clusters = kmeans.Learn(observations, weights.ToArray());

            int[] labels = clusters.Decide(observations);

            //Message
            base.Message = "Weights " + weights.Count.ToString() + "\r\n" + "Dimensions " + observations.Length.ToString() + " of length " + observations[0].Length.ToString();

            //Output
            DA.SetDataList(0, labels.ToList());

            DataTree <int> dataTree = new DataTree <int>();

            for (int i = 0; i < labels.Length; i++)
            {
                dataTree.Add(i, new GH_Path(labels[i]));
            }

            DA.SetDataTree(1, dataTree);
        }
Exemplo n.º 28
0
        static void Main(string[] args)
        {
            Console.SetWindowSize(100, 50);

            // Read in the Online Retail feature dataset
            // TODO: change the path to point to your data directory
            string dataDirPath = @"\\Mac\Home\Documents\c-sharp-machine-learning\ch.6\input-data";

            // Load the data into a data frame
            string dataPath = Path.Combine(dataDirPath, "features.csv");

            Console.WriteLine("Loading {0}\n\n", dataPath);
            var ecommerceDF = Frame.ReadCsv(
                dataPath,
                hasHeaders: true,
                inferTypes: true
                );

            Console.WriteLine("* Shape: {0}, {1}", ecommerceDF.RowCount, ecommerceDF.ColumnCount);

            string[] features = new string[] { "NetRevenuePercentile", "AvgUnitPricePercentile", "AvgQuantityPercentile" };
            Console.WriteLine("* Features: {0}\n\n", String.Join(", ", features));

            var normalizedDf = Frame.CreateEmpty <int, string>();
            var average      = ecommerceDF.Columns[features].Sum() / ecommerceDF.RowCount;

            foreach (string feature in features)
            {
                normalizedDf.AddColumn(feature, (ecommerceDF[feature] - average[feature]) / ecommerceDF[feature].StdDev());
            }

            double[][] sampleSet = BuildJaggedArray(
                normalizedDf.Columns[features].ToArray2D <double>(),
                normalizedDf.RowCount,
                features.Length
                );

            // Create a new K-Means algorithm with n clusters
            Accord.Math.Random.Generator.Seed = 0;

            int[]         numClusters      = new int[] { 4, 5, 6, 7, 8 };
            List <string> clusterNames     = new List <string>();
            List <double> silhouetteScores = new List <double>();

            for (int i = 0; i < numClusters.Length; i++)
            {
                KMeans kmeans = new KMeans(numClusters[i]);
                KMeansClusterCollection clusters = kmeans.Learn(sampleSet);
                int[] labels = clusters.Decide(sampleSet);

                string colname = String.Format("Cluster-{0}", numClusters[i]);
                clusterNames.Add(colname);

                normalizedDf.AddColumn(colname, labels);
                ecommerceDF.AddColumn(colname, labels);

                Console.WriteLine("\n\n\n#####################    {0}    ###########################", colname);

                Console.WriteLine("\n\n* Centroids for {0} clusters:", numClusters[i]);

                PrintCentroidsInfo(clusters.Centroids, features);
                Console.WriteLine("\n");

                VisualizeClusters(normalizedDf, colname, "NetRevenuePercentile", "AvgUnitPricePercentile");
                VisualizeClusters(normalizedDf, colname, "AvgUnitPricePercentile", "AvgQuantityPercentile");
                VisualizeClusters(normalizedDf, colname, "NetRevenuePercentile", "AvgQuantityPercentile");

                for (int j = 0; j < numClusters[i]; j++)
                {
                    GetTopNItemsPerCluster(ecommerceDF, j, colname);
                }

                double silhouetteScore = CalculateSilhouetteScore(normalizedDf, features, numClusters[i], colname);
                Console.WriteLine("\n\n* Silhouette Score: {0}", silhouetteScore.ToString("0.0000"));

                silhouetteScores.Add(silhouetteScore);
                Console.WriteLine("\n\n##############################################################\n\n\n");
            }

            for (int i = 0; i < clusterNames.Count; i++)
            {
                Console.WriteLine("- Silhouette Score for {0}: {1}", clusterNames[i], silhouetteScores[i].ToString("0.0000"));
            }

            Console.WriteLine("\n\n\nDONE!!");
            Console.ReadKey();
        }