Exemplo n.º 1
0
        public void LogisticRegression()
        {
            var X = Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 1 }, { 2 }
            });

            var Y = Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 1 }
            });

            var model = new DeepCat.DeepCat();

            model.Add(new Dense(1, Activations.Sigmoid(), weightInitializer: Initializations.Fixed()));
            model.Compile(X.RowCount, LossFunctions.CrossEntropy(), Optimizers.GradientDescent(0.02));
            model.Fit(X, Y, 1);

            var a = model.Predict(X);

            a[0, 0] = Math.Round(a[0, 0], 8);

            var expectedResult = Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 0.59859297 }
            });

            Assert.AreEqual(a, expectedResult);
        }
Exemplo n.º 2
0
        public Dense(int units, IActivation activation, bool useBias = true, IInitialization weightInitializer = null, IInitialization biasInitializer = null)
        {
            LayerSize = units;

            _activation        = activation;
            _weightInitializer = weightInitializer ?? Initializations.Zero();
            _biasInitializer   = biasInitializer ?? Initializations.Zero();
            _useBias           = useBias;
        }
Exemplo n.º 3
0
        public void TestZeroInitialization()
        {
            var initialization = Initializations.Zero();

            var initializedMatrix = initialization.Initialize(2, 2);

            var expectedMatrix = Matrix <double> .Build.Dense(2, 2);

            Assert.AreEqual(initializedMatrix, expectedMatrix);
        }
Exemplo n.º 4
0
        public void TestFixedInitialization()
        {
            var initialization = Initializations.Fixed();

            var initializedMatrix = initialization.Initialize(2, 2);

            var expectedMatrix = Matrix <double> .Build.DenseOfArray(new double[, ] {
                { 0.11, 0.12 }, { 0.21, 0.22 }
            });

            Assert.AreEqual(initializedMatrix, expectedMatrix);
        }
Exemplo n.º 5
0
 /// <summary>
 /// Create a <see cref="For"/> with the specified <see cref="CodeObject"/> in the body.
 /// </summary>
 public For(Expression initialization, Expression conditional, Expression iteration)
 {
     if (initialization != null)
     {
         Initializations.Add(initialization);
     }
     Conditional = conditional;
     if (iteration != null)
     {
         Iterations.Add(iteration);
     }
 }
Exemplo n.º 6
0
 /// <summary>
 /// Create a <see cref="For"/> with the specified <see cref="CodeObject"/> in the body.
 /// </summary>
 public For(Expression initialization, Expression conditional, Expression iteration, CodeObject body)
     : base(body, true)
 {
     if (initialization != null)
     {
         Initializations.Add(initialization);
     }
     Conditional = conditional;
     if (iteration != null)
     {
         Iterations.Add(iteration);
     }
 }
Exemplo n.º 7
0
        public void TestRandomNormalInitialization()
        {
            var initialization = Initializations.RandomNormal();

            initialization.SetSeed(0);

            var initializedMatrix = initialization.Initialize(2, 2);

            var expectedMatrix = Matrix <double> .Build.Random(2, 2, new Normal(new Random(0)));

            Console.WriteLine(initializedMatrix);
            Console.WriteLine(expectedMatrix);

            Assert.AreEqual(initializedMatrix, expectedMatrix);
        }
Exemplo n.º 8
0
        static void Main(string[] args)
        {
            var X = Matrix <double> .Build.Random(5, 100);

            var Y = Matrix <double> .Build.Random(1, 100);

            var test = Matrix <double> .Build.Random(5, 1);


            var model = new DeepCat();

            model.Add(new Dense(5, Activations.Relu(), weightInitializer: Initializations.RandomNormal()));
            model.Add(new Dense(5, Activations.Relu(), weightInitializer: Initializations.RandomNormal()));
            model.Add(new Dense(1, Activations.Sigmoid()));

            model.Compile(X.RowCount, LossFunctions.CrossEntropy(), Optimizers.GradientDescent(0.002));

            model.Fit(X, Y, 100);
            model.Predict(test);



            var x = 1;
        }
Exemplo n.º 9
0
 public void Initialize(VirtualDataWindowFactoryContext factoryContext)
 {
     Initializations.Add(factoryContext);
 }