Exemplo n.º 1
0
        /// <summary>
        /// Save the model in text format (if it can save itself)
        /// </summary>
        public static void SaveIni(IChannel ch, IPredictor predictor, RoleMappedSchema schema, TextWriter writer)
        {
            Contracts.CheckValue(ch, nameof(ch));
            ch.CheckValue(predictor, nameof(predictor));
            ch.CheckValueOrNull(schema);
            ch.CheckValue(writer, nameof(writer));

            var iniSaver = predictor as ICanSaveInIniFormat;

            if (iniSaver != null)
            {
                iniSaver.SaveAsIni(writer, schema);
                return;
            }

            var summarySaver = predictor as ICanSaveSummary;

            if (summarySaver != null)
            {
                writer.WriteLine("'{0}' does not support saving in INI format, writing out model summary instead", predictor.GetType().Name);
                ch.Error("'{0}' doesn't currently have standardized INI format output, will save model summary instead",
                         predictor.GetType().Name);
                summarySaver.SaveSummary(writer, schema);
            }
            else
            {
                writer.WriteLine("'{0}' does not support saving in INI format", predictor.GetType().Name);
                ch.Error("'{0}' doesn't currently have standardized INI format output", predictor.GetType().Name);
            }
        }
        internal static IDataView GetSummaryAndStats(IHostEnvironment env, IPredictor predictor, RoleMappedSchema schema, out IDataView stats)
        {
            var calibrated = predictor as IWeaklyTypedCalibratedModelParameters;

            while (calibrated != null)
            {
                predictor  = calibrated.WeeklyTypedSubModel;
                calibrated = predictor as IWeaklyTypedCalibratedModelParameters;
            }

            IDataView summary = null;

            stats = null;
            var dvGetter  = predictor as ICanGetSummaryAsIDataView;
            var rowGetter = predictor as ICanGetSummaryAsIRow;

            if (dvGetter != null)
            {
                summary = dvGetter.GetSummaryDataView(schema);
            }
            if (rowGetter != null)
            {
                var row = rowGetter.GetSummaryIRowOrNull(schema);
                env.Check(dvGetter == null || row == null,
                          "Predictor outputs two summary data views, don't know which one to choose");
                if (row != null)
                {
                    summary = RowCursorUtils.RowAsDataView(env, row);
                }
                var statsRow = rowGetter.GetStatsIRowOrNull(schema);
                if (statsRow != null)
                {
                    stats = RowCursorUtils.RowAsDataView(env, statsRow);
                }
            }
            if (dvGetter == null && rowGetter == null)
            {
                var bldr         = new ArrayDataViewBuilder(env);
                var summaryModel = predictor as ICanSaveSummary;

                // Save a data view containing one row and one column with the model summary.
                if (summaryModel != null)
                {
                    var sb = new StringBuilder();
                    using (StringWriter sw = new StringWriter(sb))
                        summaryModel.SaveSummary(sw, schema);
                    bldr.AddColumn("Summary", sb.ToString());
                }
                else
                {
                    bldr.AddColumn("PredictorName", predictor.GetType().ToString());
                }
                summary = bldr.GetDataView();
            }
            env.AssertValue(summary);
            return(summary);
        }
Exemplo n.º 3
0
        /// <summary>
        /// Save the model summary.
        /// </summary>
        public static void SaveSummary(IChannel ch, IPredictor predictor, RoleMappedSchema schema, TextWriter writer)
        {
            Contracts.CheckValue(ch, nameof(ch));
            ch.CheckValue(predictor, nameof(predictor));
            ch.CheckValueOrNull(schema);
            ch.CheckValue(writer, nameof(writer));

            var saver = predictor as ICanSaveSummary;

            if (saver != null)
            {
                saver.SaveSummary(writer, schema);
            }
            else
            {
                writer.WriteLine("'{0}' does not support saving summary", predictor.GetType().Name);
                ch.Error("'{0}' does not support saving summary", predictor.GetType().Name);
            }
        }
Exemplo n.º 4
0
        /// <summary>
        /// Save the model in text format (if it can save itself)
        /// </summary>
        public static void SaveCode(IChannel ch, IPredictor predictor, RoleMappedSchema schema, TextWriter writer)
        {
            Contracts.CheckValue(ch, nameof(ch));
            ch.CheckValue(predictor, nameof(predictor));
            ch.CheckValueOrNull(schema);
            ch.CheckValue(writer, nameof(writer));

            var saver = predictor as ICanSaveInSourceCode;

            if (saver != null)
            {
                saver.SaveAsCode(writer, schema);
            }
            else
            {
                writer.WriteLine("'{0}' does not support saving in code.", predictor.GetType().Name);
                ch.Error("'{0}' doesn't currently support saving the model as code", predictor.GetType().Name);
            }
        }
Exemplo n.º 5
0
        private static IPredictor TrainCore(IHostEnvironment env, IChannel ch, RoleMappedData data, ITrainer trainer, string name, RoleMappedData validData,
                                            ICalibratorTrainer calibrator, int maxCalibrationExamples, bool?cacheData, IPredictor inpPredictor = null)
        {
            Contracts.CheckValue(env, nameof(env));
            env.CheckValue(ch, nameof(ch));
            ch.CheckValue(data, nameof(data));
            ch.CheckValue(trainer, nameof(trainer));
            ch.CheckNonEmpty(name, nameof(name));
            ch.CheckValueOrNull(validData);
            ch.CheckValueOrNull(inpPredictor);

            var trainerRmd = trainer as ITrainer <RoleMappedData>;

            if (trainerRmd == null)
            {
                throw ch.ExceptUserArg(nameof(TrainCommand.Arguments.Trainer), "Trainer '{0}' does not accept known training data type", name);
            }

            Action <IChannel, ITrainer, Action <object>, object, object, object> trainCoreAction = TrainCore;
            IPredictor predictor;

            AddCacheIfWanted(env, ch, trainer, ref data, cacheData);
            ch.Trace("Training");
            if (validData != null)
            {
                AddCacheIfWanted(env, ch, trainer, ref validData, cacheData);
            }

            var genericExam = trainCoreAction.GetMethodInfo().GetGenericMethodDefinition().MakeGenericMethod(
                typeof(RoleMappedData),
                inpPredictor != null ? inpPredictor.GetType() : typeof(IPredictor));
            Action <RoleMappedData> trainExam = trainerRmd.Train;

            genericExam.Invoke(null, new object[] { ch, trainerRmd, trainExam, data, validData, inpPredictor });

            ch.Trace("Constructing predictor");
            predictor = trainerRmd.CreatePredictor();
            return(CalibratorUtils.TrainCalibratorIfNeeded(env, ch, calibrator, maxCalibrationExamples, trainer, predictor, data));
        }
Exemplo n.º 6
0
        /// <summary>
        /// Save the model in binary format (if it can save itself)
        /// </summary>
        public static void SaveBinary(IChannel ch, IPredictor predictor, BinaryWriter writer)
        {
            Contracts.CheckValue(ch, nameof(ch));
            var saver = predictor as ICanSaveInBinaryFormat;

            if (saver == null)
            {
                ch.Error("'{0}' doesn't currently have standardized binary format for /mb", predictor.GetType().Name);
                return;
            }
            saver.SaveAsBinary(writer);
        }
Exemplo n.º 7
0
        /// <summary>
        /// Finalizes the test on a predictor, calls the predictor with a scorer,
        /// saves the data, saves the models, loads it back, saves the data again,
        /// checks the output is the same.
        /// </summary>
        /// <param name="env">environment</param>
        /// <param name="outModelFilePath">output filename</param>
        /// <param name="predictor">predictor</param>
        /// <param name="roles">label, feature, ...</param>
        /// <param name="outData">first output data</param>
        /// <param name="outData2">second output data</param>
        /// <param name="kind">prediction kind</param>
        /// <param name="checkError">checks errors</param>
        /// <param name="ratio">check the error is below that threshold (if checkError is true)</param>
        /// <param name="ratioReadSave">check the predictions difference after reloading the model are below this threshold</param>
        public static void FinalizeSerializationTest(IHostEnvironment env,
                                                     string outModelFilePath, IPredictor predictor,
                                                     RoleMappedData roles, string outData, string outData2,
                                                     PredictionKind kind, bool checkError = true,
                                                     float ratio    = 0.8f, float ratioReadSave = 0.06f,
                                                     bool checkType = true)
        {
            string labelColumn = kind != PredictionKind.Clustering ? roles.Schema.Label.Value.Name : null;

            #region save, reading, running

            // Saves model.
            using (var ch = env.Start("Save"))
                using (var fs = File.Create(outModelFilePath))
                    TrainUtils.SaveModel(env, ch, fs, predictor, roles);
            if (!File.Exists(outModelFilePath))
            {
                throw new FileNotFoundException(outModelFilePath);
            }

            // Loads the model back.
            using (var fs = File.OpenRead(outModelFilePath))
            {
                var pred_local = ModelFileUtils.LoadPredictorOrNull(env, fs);
                if (pred_local == null)
                {
                    throw new Exception(string.Format("Unable to load '{0}'", outModelFilePath));
                }
                if (checkType && predictor.GetType() != pred_local.GetType())
                {
                    throw new Exception(string.Format("Type mismatch {0} != {1}", predictor.GetType(), pred_local.GetType()));
                }
            }

            // Checks the outputs.
            var sch1   = SchemaHelper.ToString(roles.Schema.Schema);
            var scorer = PredictorHelper.CreateDefaultScorer(env, roles, predictor);

            var sch2 = SchemaHelper.ToString(scorer.Schema);
            if (string.IsNullOrEmpty(sch1) || string.IsNullOrEmpty(sch2))
            {
                throw new Exception("Empty schemas");
            }

            var saver   = env.CreateSaver("Text");
            var columns = new int[scorer.Schema.Count];
            for (int i = 0; i < columns.Length; ++i)
            {
                columns[i] = saver.IsColumnSavable(scorer.Schema[i].Type) ? i : -1;
            }
            columns = columns.Where(c => c >= 0).ToArray();
            using (var fs2 = File.Create(outData))
                saver.SaveData(fs2, scorer, columns);

            if (!File.Exists(outModelFilePath))
            {
                throw new FileNotFoundException(outData);
            }

            // Check we have the same output.
            using (var fs = File.OpenRead(outModelFilePath))
            {
                var model = ModelFileUtils.LoadPredictorOrNull(env, fs);
                scorer = PredictorHelper.CreateDefaultScorer(env, roles, model);
                saver  = env.CreateSaver("Text");
                using (var fs2 = File.Create(outData2))
                    saver.SaveData(fs2, scorer, columns);
            }

            var t1 = File.ReadAllLines(outData);
            var t2 = File.ReadAllLines(outData2);
            if (t1.Length != t2.Length)
            {
                throw new Exception(string.Format("Not the same number of lines: {0} != {1}", t1.Length, t2.Length));
            }
            var linesN = new List <int>();
            for (int i = 0; i < t1.Length; ++i)
            {
                if (t1[i] != t2[i])
                {
                    linesN.Add(i);
                }
            }
            if (linesN.Count > (int)(t1.Length * ratioReadSave))
            {
                var rows = linesN.Select(i => string.Format("1-Mismatch on line {0}/{3}:\n{1}\n{2}", i, t1[i], t2[i], t1.Length)).ToList();
                rows.Add($"Number of differences: {linesN.Count}/{t1.Length}");
                throw new Exception(string.Join("\n", rows));
            }

            #endregion

            #region clustering

            if (kind == PredictionKind.Clustering)
            {
                // Nothing to do here.
                return;
            }

            #endregion

            #region supervized

            string expectedOuput = kind == PredictionKind.Regression ? "Score" : "PredictedLabel";

            // Get label and basic checking about performance.
            using (var cursor = scorer.GetRowCursor(scorer.Schema))
            {
                int ilabel, ipred;
                ilabel = SchemaHelper.GetColumnIndex(cursor.Schema, labelColumn);
                ipred  = SchemaHelper.GetColumnIndex(cursor.Schema, expectedOuput);
                var ty1   = cursor.Schema[ilabel].Type;
                var ty2   = cursor.Schema[ipred].Type;
                var dist1 = new Dictionary <int, int>();
                var dist2 = new Dictionary <int, int>();
                var conf  = new Dictionary <Tuple <int, int>, long>();

                if (kind == PredictionKind.MulticlassClassification)
                {
                    #region Multiclass

                    if (!ty2.IsKey())
                    {
                        throw new Exception(string.Format("Label='{0}' Predicted={1}'\nSchema: {2}", ty1, ty2, SchemaHelper.ToString(cursor.Schema)));
                    }

                    if (ty1.RawKind() == DataKind.Single)
                    {
                        var   lgetter = cursor.GetGetter <float>(SchemaHelper._dc(ilabel, cursor));
                        var   pgetter = cursor.GetGetter <uint>(SchemaHelper._dc(ipred, cursor));
                        float ans     = 0;
                        uint  pre     = 0;
                        while (cursor.MoveNext())
                        {
                            lgetter(ref ans);
                            pgetter(ref pre);

                            // The scorer +1 to the argmax.
                            ++ans;

                            var key = new Tuple <int, int>((int)pre, (int)ans);
                            if (!conf.ContainsKey(key))
                            {
                                conf[key] = 1;
                            }
                            else
                            {
                                ++conf[key];
                            }
                            if (!dist1.ContainsKey((int)ans))
                            {
                                dist1[(int)ans] = 1;
                            }
                            else
                            {
                                ++dist1[(int)ans];
                            }
                            if (!dist2.ContainsKey((int)pre))
                            {
                                dist2[(int)pre] = 1;
                            }
                            else
                            {
                                ++dist2[(int)pre];
                            }
                        }
                    }
                    else if (ty1.RawKind() == DataKind.UInt32 && ty1.IsKey())
                    {
                        var  lgetter = cursor.GetGetter <uint>(SchemaHelper._dc(ilabel, cursor));
                        var  pgetter = cursor.GetGetter <uint>(SchemaHelper._dc(ipred, cursor));
                        uint ans     = 0;
                        uint pre     = 0;
                        while (cursor.MoveNext())
                        {
                            lgetter(ref ans);
                            pgetter(ref pre);

                            var key = new Tuple <int, int>((int)pre, (int)ans);
                            if (!conf.ContainsKey(key))
                            {
                                conf[key] = 1;
                            }
                            else
                            {
                                ++conf[key];
                            }
                            if (!dist1.ContainsKey((int)ans))
                            {
                                dist1[(int)ans] = 1;
                            }
                            else
                            {
                                ++dist1[(int)ans];
                            }
                            if (!dist2.ContainsKey((int)pre))
                            {
                                dist2[(int)pre] = 1;
                            }
                            else
                            {
                                ++dist2[(int)pre];
                            }
                        }
                    }
                    else
                    {
                        throw new NotImplementedException(string.Format("Not implemented for type {0}", ty1.ToString()));
                    }
                    #endregion
                }
                else if (kind == PredictionKind.BinaryClassification)
                {
                    #region binary classification

                    if (ty2.RawKind() != DataKind.Boolean)
                    {
                        throw new Exception(string.Format("Label='{0}' Predicted={1}'\nSchema: {2}", ty1, ty2, SchemaHelper.ToString(cursor.Schema)));
                    }

                    if (ty1.RawKind() == DataKind.Single)
                    {
                        var   lgetter = cursor.GetGetter <float>(SchemaHelper._dc(ilabel, cursor));
                        var   pgetter = cursor.GetGetter <bool>(SchemaHelper._dc(ipred, cursor));
                        float ans     = 0;
                        bool  pre     = default(bool);
                        while (cursor.MoveNext())
                        {
                            lgetter(ref ans);
                            pgetter(ref pre);

                            if (ans != 0 && ans != 1)
                            {
                                throw Contracts.Except("The problem is not binary, expected answer is {0}", ans);
                            }

                            var key = new Tuple <int, int>(pre ? 1 : 0, (int)ans);
                            if (!conf.ContainsKey(key))
                            {
                                conf[key] = 1;
                            }
                            else
                            {
                                ++conf[key];
                            }
                            if (!dist1.ContainsKey((int)ans))
                            {
                                dist1[(int)ans] = 1;
                            }
                            else
                            {
                                ++dist1[(int)ans];
                            }
                            if (!dist2.ContainsKey(pre ? 1 : 0))
                            {
                                dist2[pre ? 1 : 0] = 1;
                            }
                            else
                            {
                                ++dist2[pre ? 1 : 0];
                            }
                        }
                    }
                    else if (ty1.RawKind() == DataKind.UInt32)
                    {
                        var  lgetter = cursor.GetGetter <uint>(SchemaHelper._dc(ilabel, cursor));
                        var  pgetter = cursor.GetGetter <bool>(SchemaHelper._dc(ipred, cursor));
                        uint ans     = 0;
                        bool pre     = default(bool);
                        while (cursor.MoveNext())
                        {
                            lgetter(ref ans);
                            pgetter(ref pre);
                            if (ty1.IsKey())
                            {
                                --ans;
                            }

                            if (ans != 0 && ans != 1)
                            {
                                throw Contracts.Except("The problem is not binary, expected answer is {0}", ans);
                            }

                            var key = new Tuple <int, int>(pre ? 1 : 0, (int)ans);
                            if (!conf.ContainsKey(key))
                            {
                                conf[key] = 1;
                            }
                            else
                            {
                                ++conf[key];
                            }
                            if (!dist1.ContainsKey((int)ans))
                            {
                                dist1[(int)ans] = 1;
                            }
                            else
                            {
                                ++dist1[(int)ans];
                            }
                            if (!dist2.ContainsKey(pre ? 1 : 0))
                            {
                                dist2[pre ? 1 : 0] = 1;
                            }
                            else
                            {
                                ++dist2[pre ? 1 : 0];
                            }
                        }
                    }
                    else if (ty1.RawKind() == DataKind.Boolean)
                    {
                        var  lgetter = cursor.GetGetter <bool>(SchemaHelper._dc(ilabel, cursor));
                        var  pgetter = cursor.GetGetter <bool>(SchemaHelper._dc(ipred, cursor));
                        bool ans     = default(bool);
                        bool pre     = default(bool);
                        while (cursor.MoveNext())
                        {
                            lgetter(ref ans);
                            pgetter(ref pre);

                            var key = new Tuple <int, int>(pre ? 1 : 0, ans ? 1 : 0);
                            if (!conf.ContainsKey(key))
                            {
                                conf[key] = 1;
                            }
                            else
                            {
                                ++conf[key];
                            }

                            if (!dist1.ContainsKey(ans ? 1 : 0))
                            {
                                dist1[ans ? 1 : 0] = 1;
                            }
                            else
                            {
                                ++dist1[ans ? 1 : 0];
                            }
                            if (!dist2.ContainsKey(pre ? 1 : 0))
                            {
                                dist2[pre ? 1 : 0] = 1;
                            }
                            else
                            {
                                ++dist2[pre ? 1 : 0];
                            }
                        }
                    }
                    else
                    {
                        throw new NotImplementedException(string.Format("Not implemented for type {0}", ty1));
                    }

                    #endregion
                }
                else if (kind == PredictionKind.Regression)
                {
                    #region regression

                    if (ty1.RawKind() != DataKind.Single)
                    {
                        throw new Exception(string.Format("Label='{0}' Predicted={1}'\nSchema: {2}", ty1, ty2, SchemaHelper.ToString(cursor.Schema)));
                    }
                    if (ty2.RawKind() != DataKind.Single)
                    {
                        throw new Exception(string.Format("Label='{0}' Predicted={1}'\nSchema: {2}", ty1, ty2, SchemaHelper.ToString(cursor.Schema)));
                    }

                    var   lgetter = cursor.GetGetter <float>(SchemaHelper._dc(ilabel, cursor));
                    var   pgetter = cursor.GetGetter <float>(SchemaHelper._dc(ipred, cursor));
                    float ans     = 0;
                    float pre     = 0f;
                    float error   = 0f;
                    while (cursor.MoveNext())
                    {
                        lgetter(ref ans);
                        pgetter(ref pre);
                        error += (ans - pre) * (ans - pre);
                        if (!dist1.ContainsKey((int)ans))
                        {
                            dist1[(int)ans] = 1;
                        }
                        else
                        {
                            ++dist1[(int)ans];
                        }
                        if (!dist2.ContainsKey((int)pre))
                        {
                            dist2[(int)pre] = 1;
                        }
                        else
                        {
                            ++dist2[(int)pre];
                        }
                    }

                    if (float.IsNaN(error) || float.IsInfinity(error))
                    {
                        throw new Exception("Regression wen wrong. Error is infinite.");
                    }

                    #endregion
                }
                else
                {
                    throw new NotImplementedException(string.Format("Not implemented for kind {0}", kind));
                }

                var nbError = conf.Where(c => c.Key.Item1 != c.Key.Item2).Select(c => c.Value).Sum();
                var nbTotal = conf.Select(c => c.Value).Sum();

                if (checkError && (nbError * 1.0 > nbTotal * ratio || dist2.Count <= 1))
                {
                    var sconf = string.Join("\n", conf.OrderBy(c => c.Key)
                                            .Select(c => string.Format("pred={0} exp={1} count={2}", c.Key.Item1, c.Key.Item2, c.Value)));
                    var sdist2 = string.Join("\n", dist1.OrderBy(c => c.Key)
                                             .Select(c => string.Format("label={0} count={1}", c.Key, c.Value)));
                    var sdist1 = string.Join("\n", dist2.OrderBy(c => c.Key).Take(20)
                                             .Select(c => string.Format("label={0} count={1}", c.Key, c.Value)));
                    throw new Exception(string.Format("Too many errors {0}/{1}={7}\n###########\nConfusion:\n{2}\n########\nDIST1\n{3}\n###########\nDIST2\n{4}\nOutput:\n{5}\n...\n{6}",
                                                      nbError, nbTotal,
                                                      sconf, sdist1, sdist2,
                                                      string.Join("\n", t1.Take(Math.Min(30, t1.Length))),
                                                      string.Join("\n", t1.Skip(Math.Max(0, t1.Length - 30))),
                                                      nbError * 1.0 / nbTotal));
                }
            }

            #endregion
        }
Exemplo n.º 8
0
        /// <summary>
        /// Build a Bing TreeEnsemble .ini representation of the given predictor
        /// </summary>
        public static string LinearModelAsIni(ref VBuffer <Float> weights, Float bias, IPredictor predictor = null,
                                              RoleMappedSchema schema = null, PlattCalibrator calibrator = null)
        {
            // TODO: Might need to consider a max line length for the Weights list, requiring us to split it up into
            //   multiple evaluators
            StringBuilder inputBuilder           = new StringBuilder();
            StringBuilder aggregatedNodesBuilder = new StringBuilder("Nodes=");
            StringBuilder weightsBuilder         = new StringBuilder("Weights=");

            var featureNames = default(VBuffer <ReadOnlyMemory <char> >);

            MetadataUtils.GetSlotNames(schema, RoleMappedSchema.ColumnRole.Feature, weights.Length, ref featureNames);

            int          numNonZeroWeights = 0;
            const string weightsSep        = "\t";

            VBufferUtils.ForEachDefined(ref weights,
                                        (idx, value) =>
            {
                if (Math.Abs(value - 0) >= Epsilon)
                {
                    numNonZeroWeights++;

                    var name = featureNames.GetItemOrDefault(idx);

                    inputBuilder.AppendLine("[Input:" + numNonZeroWeights + "]");
                    inputBuilder.AppendLine("Name=" + (featureNames.Count == 0 ? "Feature_" + idx : name.IsEmpty ? $"f{idx}" : name.ToString()));
                    inputBuilder.AppendLine("Transform=linear");
                    inputBuilder.AppendLine("Slope=1");
                    inputBuilder.AppendLine("Intercept=0");
                    inputBuilder.AppendLine();

                    aggregatedNodesBuilder.Append("I:" + numNonZeroWeights + weightsSep);
                    weightsBuilder.Append(value + weightsSep);
                }
            });

            StringBuilder builder = new StringBuilder();

            builder.AppendLine("[TreeEnsemble]");
            builder.AppendLine("Inputs=" + numNonZeroWeights);
            builder.AppendLine("Evaluators=1");
            builder.AppendLine();

            builder.AppendLine(inputBuilder.ToString());

            builder.AppendLine("[Evaluator:1]");
            builder.AppendLine("EvaluatorType=Aggregator");
            builder.AppendLine("Type=Linear");
            builder.AppendLine("Bias=" + bias);
            builder.AppendLine("NumNodes=" + numNonZeroWeights);
            builder.AppendLine(aggregatedNodesBuilder.ToString().Trim());
            builder.AppendLine(weightsBuilder.ToString().Trim());

#if false // REVIEW: This should be done by the caller using the actual training args!
            builder.AppendLine();
            builder.AppendLine("[Comments]");
            builder.Append("Trained by TLC");
            if (predictor != null)
            {
                builder.Append(" as /cl " + predictor.GetType().Name);
                if (predictor is IInitializable)
                {
                    string settings = string.Join(";", (predictor as IInitializable).GetSettings());
                    if (!string.IsNullOrEmpty(settings))
                    {
                        builder.Append(" /cls " + settings);
                    }
                }
            }
#endif

            string ini = builder.ToString();

            // Add the calibration if the model was trained with calibration
            if (calibrator != null)
            {
                string calibratorEvaluatorIni = IniFileUtils.GetCalibratorEvaluatorIni(ini, calibrator);
                ini = IniFileUtils.AddEvaluator(ini, calibratorEvaluatorIni);
            }
            return(ini);
        }