Exemplo n.º 1
0
        /**
         * Calculate the indexes for X[i] into a vector representing the enumeration
         * of the value assignments for the variables X and their corresponding
         * assignment in x. For example the Random Variables:<br>
         * Q::{true, false}, R::{'A', 'B','C'}, and T::{true, false}, would be
         * enumerated in a Vector as follows:
         *
         * <pre>
         * Index  Q      R  T
         * -----  -      -  -
         * 00:    true,  A, true
         * 01:    true,  A, false
         * 02:    true,  B, true
         * 03:    true,  B, false
         * 04:    true,  C, true
         * 05:    true,  C, false
         * 06:    false, A, true
         * 07:    false, A, false
         * 08:    false, B, true
         * 09:    false, B, false
         * 10:    false, C, true
         * 11:    false, C, false
         * </pre>
         *
         * if X[i] = R and x = {..., R='C', ...} then the indexes returned would be
         * [4, 5, 10, 11].
         *
         * @param X
         *            a list of the Random Variables that would comprise the vector.
         * @param idx
         *            the index into X for the Random Variable whose assignment we
         *            wish to retrieve its indexes for.
         * @param x
         *            an assignment for the Random Variables in X.
         * @return the indexes into a vector that would represent the enumeration of
         *         the values for X[i] in x.
         */
        public static int[] indexesOfValue(IRandomVariable[] X, int idx, IMap <IRandomVariable, object> x)
        {
            int csize = ProbUtil.expectedSizeOfCategoricalDistribution(X);

            IFiniteDomain fd       = (IFiniteDomain)X[idx].getDomain();
            int           vdoffset = fd.GetOffset(x.Get(X[idx]));
            int           vdosize  = fd.Size();

            int[] indexes = new int[csize / vdosize];

            int blocksize = csize;

            for (int i = 0; i < X.Length; ++i)
            {
                blocksize = blocksize / X[i].getDomain().Size();
                if (i == idx)
                {
                    break;
                }
            }

            for (int i = 0; i < indexes.Length; i += blocksize)
            {
                int offset = ((i / blocksize) * vdosize * blocksize)
                             + (blocksize * vdoffset);
                for (int b = 0; b < blocksize; b++)
                {
                    indexes[i + b] = offset + b;
                }
            }

            return(indexes);
        }
Exemplo n.º 2
0
        /**
         * Calculate the index into a vector representing the enumeration of the
         * value assignments for the variables X and their corresponding assignment
         * in x. For example the Random Variables:<br>
         * Q::{true, false}, R::{'A', 'B','C'}, and T::{true, false}, would be
         * enumerated in a Vector as follows:
         *
         * <pre>
         * Index  Q      R  T
         * -----  -      -  -
         * 00:    true,  A, true
         * 01:    true,  A, false
         * 02:    true,  B, true
         * 03:    true,  B, false
         * 04:    true,  C, true
         * 05:    true,  C, false
         * 06:    false, A, true
         * 07:    false, A, false
         * 08:    false, B, true
         * 09:    false, B, false
         * 10:    false, C, true
         * 11:    false, C, false
         * </pre>
         *
         * if x = {Q=true, R='C', T=false} the index returned would be 5.
         *
         * @param X
         *            a list of the Random Variables that would comprise the vector.
         * @param x
         *            an assignment for the Random Variables in X.
         * @return an index into a vector that would represent the enumeration of
         *         the values for X.
         */
        public static int indexOf(IRandomVariable[] X, IMap <IRandomVariable, object> x)
        {
            if (0 == X.Length)
            {
                return(((IFiniteDomain)X[0].getDomain()).GetOffset(x.Get(X[0])));
            }
            // X.Length > 1 then calculate using a mixed radix number
            //
            // Note: Create radices in reverse order so that the enumeration
            // through the distributions is of the following
            // order using a MixedRadixNumber, e.g. for two Booleans:
            // X Y
            // true true
            // true false
            // false true
            // false false
            // which corresponds with how displayed in book.
            int[] radixValues = new int[X.Length];
            int[] radices     = new int[X.Length];
            int   j           = X.Length - 1;

            for (int i = 0; i < X.Length; ++i)
            {
                IFiniteDomain fd = (IFiniteDomain)X[i].getDomain();
                radixValues[j] = fd.GetOffset(x.Get(X[i]));
                radices[j]     = fd.Size();
                j--;
            }

            return(new MixedRadixNumber(radixValues, radices).IntValue());
        }
Exemplo n.º 3
0
        public virtual Matrix createUnitMessage()
        {
            double[] values = new double[stateVariableDomain.Size()];
            for (int i = 0; i < values.Length; ++i)
            {
                values[i] = 1D;
            }

            return(new Matrix(values, values.Length));
        }
Exemplo n.º 4
0
        /**
         * Calculate the probability distribution for <b>P</b>(X<sub>i</sub> |
         * mb(X<sub>i</sub>)), where mb(X<sub>i</sub>) is the Markov Blanket of
         * X<sub>i</sub>. The probability of a variable given its Markov blanket is
         * proportional to the probability of the variable given its parents times
         * the probability of each child given its respective parents (see equation
         * 14.12 pg. 538 AIMA3e):<br>
         * <br>
         * P(x'<sub>i</sub>|mb(Xi)) =
         * &alpha;P(x'<sub>i</sub>|parents(X<sub>i</sub>)) *
         * &prod;<sub>Y<sub>j</sub> &isin; Children(X<sub>i</sub>)</sub>
         * P(y<sub>j</sub>|parents(Y<sub>j</sub>))
         *
         * @param Xi
         *            a Node from a Bayesian network for the Random Variable
         *            X<sub>i</sub>.
         * @param event
         *            comprising assignments for the Markov Blanket X<sub>i</sub>.
         * @return a random sample from <b>P</b>(X<sub>i</sub> | mb(X<sub>i</sub>))
         */
        public static double[] mbDistribution(INode Xi, IMap <IRandomVariable, object> even)
        {
            IFiniteDomain fd = (IFiniteDomain)Xi.GetRandomVariable().getDomain();

            double[] X = new double[fd.Size()];

            /**
             * As we iterate over the domain of a ramdom variable corresponding to Xi
             * it is necessary to make the modified values of the variable visible
             * to the child nodes of Xi in the computation of the markov blanket
             * probabilities.
             */
            //Copy contents of event to generatedEvent so as to leave event untouched
            IMap <IRandomVariable, object> generatedEvent = CollectionFactory.CreateInsertionOrderedMap <IRandomVariable, object>();

            foreach (var entry in even)
            {
                generatedEvent.Put(entry.GetKey(), entry.GetValue());
            }

            for (int i = 0; i < fd.Size(); ++i)
            {
                /** P(x'<sub>i</sub>|mb(Xi)) =
                 * &alpha;P(x'<sub>i</sub>|parents(X<sub>i</sub>)) *
                 * &prod;<sub>Y<sub>j</sub> &isin; Children(X<sub>i</sub>)</sub>
                 * P(y<sub>j</sub>|parents(Y<sub>j</sub>))
                 */
                generatedEvent.Put(Xi.GetRandomVariable(), fd.GetValueAt(i));
                double cprob = 1.0;
                foreach (INode Yj in Xi.GetChildren())
                {
                    cprob *= Yj.GetCPD().GetValue(
                        getEventValuesForXiGivenParents(Yj, generatedEvent));
                }
                X[i] = Xi.GetCPD()
                       .GetValue(
                    getEventValuesForXiGivenParents(Xi,
                                                    fd.GetValueAt(i), even))
                       * cprob;
            }

            return(Util.normalize(X));
        }
Exemplo n.º 5
0
        /**
         *
         * @param probabilityChoice
         *            a probability choice for the sample
         * @param Xi
         *            a Random Variable with a finite domain from which a random
         *            sample is to be chosen based on the probability choice.
         * @param distribution
         *            Xi's distribution.
         * @return a Random Sample from Xi's domain.
         */
        public static object sample(double probabilityChoice, IRandomVariable Xi, double[] distribution)
        {
            IFiniteDomain fd = (IFiniteDomain)Xi.getDomain();

            if (fd.Size() != distribution.Length)
            {
                throw new IllegalArgumentException("Size of domain Xi " + fd.Size()
                                                   + " is not equal to the size of the distribution "
                                                   + distribution.Length);
            }
            int    i     = 0;
            double total = distribution[0];

            while (probabilityChoice > total)
            {
                ++i;
                total += distribution[i];
            }
            return(fd.GetValueAt(i));
        }
Exemplo n.º 6
0
 /// <summary>
 /// Instantiate a Hidden Markov Model.
 /// </summary>
 /// <param name="stateVariable">
 /// the single discrete random variable used to describe the process states 1,...,S.
 /// </param>
 /// <param name="transitionModel">
 /// the transition model:<para />
 /// P(Xt | Xt-1)<para />
 /// is represented by an S * S matrix T where
 /// Tij= P(Xt = j | Xt-1 = i).
 /// </param>
 /// <param name="sensorModel">
 /// the sensor model in matrix form:<para />
 /// P(et | Xt = i) for each state i. For
 /// mathematical convenience we place each of these values into an
 /// S * S diagonal matrix.
 /// </param>
 /// <param name="prior">the prior distribution represented as a column vector in Matrix form.</param>
 public HiddenMarkovModel(IRandomVariable stateVariable, Matrix transitionModel, IMap <object, Matrix> sensorModel, Matrix prior)
 {
     if (!stateVariable.getDomain().IsFinite())
     {
         throw new IllegalArgumentException("State Variable for HHM must be finite.");
     }
     this.stateVariable  = stateVariable;
     stateVariableDomain = (IFiniteDomain)stateVariable.getDomain();
     if (transitionModel.GetRowDimension() != transitionModel
         .GetColumnDimension())
     {
         throw new IllegalArgumentException("Transition Model row and column dimensions must match.");
     }
     if (stateVariableDomain.Size() != transitionModel.GetRowDimension())
     {
         throw new IllegalArgumentException("Transition Model Matrix does not map correctly to the HMM's State Variable.");
     }
     this.transitionModel = transitionModel;
     foreach (Matrix smVal in sensorModel.GetValues())
     {
         if (smVal.GetRowDimension() != smVal.GetColumnDimension())
         {
             throw new IllegalArgumentException("Sensor Model row and column dimensions must match.");
         }
         if (stateVariableDomain.Size() != smVal.GetRowDimension())
         {
             throw new IllegalArgumentException("Sensor Model Matrix does not map correctly to the HMM's State Variable.");
         }
     }
     this.sensorModel = sensorModel;
     if (transitionModel.GetRowDimension() != prior.GetRowDimension() &&
         prior.GetColumnDimension() != 1)
     {
         throw new IllegalArgumentException("Prior is not of the correct dimensions.");
     }
     this.prior = prior;
 }
Exemplo n.º 7
0
        /**
         * Calculated the expected size of a ProbabilityTable for the provided
         * random variables.
         *
         * @param vars
         *            null, 0 or more random variables that are to be used to
         *            construct a CategoricalDistribution.
         * @return the size (i.e. getValues().Length) that the
         *         CategoricalDistribution will need to be in order to represent the
         *         specified random variables.
         *
         * @see CategoricalDistribution#getValues()
         */
        public static int expectedSizeOfProbabilityTable(params IRandomVariable[] vars)
        {
            // initially 1, as this will represent constant assignments
            // e.g. Dice1 = 1.
            int expectedSizeOfDistribution = 1;

            if (null != vars)
            {
                foreach (IRandomVariable rv in vars)
                {
                    // Create ordered domains for each variable
                    if (!(rv.getDomain() is IFiniteDomain))
                    {
                        throw new IllegalArgumentException("Cannot have an infinite domain for a variable in this calculation:"
                                                           + rv);
                    }
                    IFiniteDomain d = (IFiniteDomain)rv.getDomain();
                    expectedSizeOfDistribution *= d.Size();
                }
            }

            return(expectedSizeOfDistribution);
        }
Exemplo n.º 8
0
 public int getDomainSize()
 {
     return(varDomain.Size());
 }