/// <summary>
        /// Transformer encoder
        /// </summary>
        /// <param name="rawInputs"></param>
        /// <param name="g"></param>
        /// <returns></returns>
        public IWeightTensor Encode(IWeightTensor rawInput, int batchSize, IComputeGraph g)
        {
            int           seqLen             = rawInput.Rows / batchSize;
            IWeightTensor posEmbedding       = g.BuildPositionMatrix(seqLen, m_inputDim);
            IWeightTensor posEmbeddingRepeat = g.RepeatRows(posEmbedding, batchSize, runGradient: false);

            // Transpose to batch-first based sequence
            IWeightTensor inputs = g.TransposeBatch(rawInput, batchSize);

            inputs = g.AddMul(posEmbeddingRepeat, inputs, (float)Math.Sqrt(m_inputDim), runGradientW1: false, runGradientW2: true);

            // We don't update position embedding, so dispose it now to save memory.
            posEmbeddingRepeat.Dispose();
            posEmbedding.Dispose();

            inputs = g.Dropout(inputs, batchSize, m_dropoutRatio, inPlace: true);

            for (int k = 0; k < m_encoders.Count; k++)
            {
                inputs = m_encoders[k].Perform(inputs, batchSize, g);
            }

            // Transpose back to time-first based sequence
            rawInput = g.TransposeBatch(inputs, seqLen);

            return(rawInput);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Scaled multi-heads attention component with skip connectioned feed forward layers
        /// </summary>
        /// <param name="inputQ">The input Q tensor</param>
        /// <param name="keyMask">The mask for softmax</param>
        /// <param name="batchSize">Batch size of input data set</param>
        /// <param name="graph">The instance of computing graph</param>
        /// <returns>Transformered output tensor</returns>
        public (IWeightTensor, IWeightTensor) Perform(IWeightTensor inputQ, IWeightTensor keyMask, int batchSize, IComputeGraph graph, bool outputAttenWeights = false)
        {
            using IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention");
            int seqLenQ = inputQ.Rows / batchSize;

            IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g);

            //Input projections
            var weightedQKV = g.View(g.Affine(inputQNorm, QKV, QKVb), dims: new long[] { batchSize, seqLenQ, 3, m_multiHeadNum, m_d });
            var allQ        = g.Select(weightedQKV, 2, 0);
            var allK        = g.Select(weightedQKV, 2, 1);
            var allV        = g.Select(weightedQKV, 2, 2);


            //Multi-head attentions
            IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d });
            IWeightTensor Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenQ });
            IWeightTensor Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d });

            // Scaled softmax
            float scale = 1.0f / (float)(Math.Sqrt(m_d));
            var   attn  = g.MulBatch(Qs, Ks, scale);

            attn = g.View(attn, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenQ });

            if (keyMask != null)
            {
                attn = g.Add(attn, keyMask, inPlace: true);
            }

            var attnProbs = g.Softmax(attn, inPlace: true);

            IWeightTensor sumAttnWeights = null;

            if (outputAttenWeights)
            {
                //Merge all attention probs over multi-heads
                sumAttnWeights = graph.Sum(attnProbs, 1);
                sumAttnWeights = graph.Div(sumAttnWeights, (float)m_multiHeadNum);
                sumAttnWeights = graph.View(sumAttnWeights, new long[] { batchSize *seqLenQ, seqLenQ });
            }

            attnProbs = g.View(attnProbs, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenQ });

            IWeightTensor o = g.View(g.MulBatch(attnProbs, Vs), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d });
            IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d });

            // Output projection
            IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true);
            IWeightTensor result          = graph.Add(finalAttResults, inputQ, inPlace: true);


            return(result, sumAttnWeights);
        }
Exemplo n.º 3
0
        private float DecodeOutput(string[] OutputSentence, IComputeGraph g, float cost, SparseWeightMatrix sparseInput, List <WeightMatrix> encoded, AttentionDecoder decoder, WeightMatrix Whd, WeightMatrix bd, WeightMatrix Embedding)
        {
            int ix_input = (int)SENTTAGS.START;

            for (int i = 0; i < OutputSentence.Length + 1; i++)
            {
                int ix_target = (int)SENTTAGS.UNK;
                if (i == OutputSentence.Length)
                {
                    ix_target = (int)SENTTAGS.END;
                }
                else
                {
                    if (t_wordToIndex.ContainsKey(OutputSentence[i]))
                    {
                        ix_target = t_wordToIndex[OutputSentence[i]];
                    }
                }


                var x       = g.PeekRow(Embedding, ix_input);
                var eOutput = decoder.Decode(sparseInput, x, encoded, g);
                if (UseDropout)
                {
                    eOutput = g.Dropout(eOutput, 0.2f);
                }
                var o = g.muladd(eOutput, Whd, bd);
                if (UseDropout)
                {
                    o = g.Dropout(o, 0.2f);
                }

                var probs = g.SoftmaxWithCrossEntropy(o);
                cost += (float)-Math.Log(probs.Weight[ix_target]);

                o.Gradient             = probs.Weight;
                o.Gradient[ix_target] -= 1;
                ix_input = ix_target;
            }
            return(cost);
        }
Exemplo n.º 4
0
        public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor keyMask, int batchSize, IComputeGraph graph)
        {
            if (m_sharedQKV == false)
            {
                throw new ArgumentException($"Layer '{m_name}' is not in shared QKV mode, please call another Perform function with three separated input tensors.");
            }

            using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention_SharedQKV"))
            {
                int           seqLenQ    = inputQ.Rows / batchSize;
                IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g);

                //Input projections
                float         scale = 1.0f / (float)(m_inputDim);
                IWeightTensor mulQ, mulK, mulV;

                using (IWeightTensor inputQNormView = g.View(inputQNorm, dims: new long[] { 1, inputQ.Rows, inputQ.Columns }))
                {
                    using (IWeightTensor inputQNormViewExp = g.Expand(inputQNormView, dims: new long[] { 3, inputQ.Rows, inputQ.Columns }))
                    {
                        using (IWeightTensor mulQKV = g.MulBatch(inputQNormViewExp, QKV, 3, scale))
                        {
                            mulQ = g.Select(mulQKV, 0, 0);
                            mulK = g.Select(mulQKV, 0, 1);
                            mulV = g.Select(mulQKV, 0, 2);
                        }
                    }
                }

                IWeightTensor allQ = g.View(mulQ, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d });
                IWeightTensor allK = g.View(mulK, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d });
                IWeightTensor allV = g.View(mulV, dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d });

                //Multi-head attentions
                IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d });
                IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenQ });
                IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d });

                // Scaled softmax
                scale = 1.0f / (float)(m_d);
                IWeightTensor attn    = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale);
                IWeightTensor softmax = g.Softmax(attn, keyMask, inPlace: true);
                IWeightTensor o       = g.View(g.MulBatch(softmax, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d });

                IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d });

                // Output projection
                IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true);

                return(graph.Add(finalAttResults, inputQ));
            }
        }
Exemplo n.º 5
0
        /// <summary>
        /// Transformer encoder
        /// </summary>
        /// <param name="rawInputs"></param>
        /// <param name="g"></param>
        /// <returns></returns>
        ///

        public IWeightTensor Decode(IWeightTensor tgtInputs, IWeightTensor encOutputBatchFirst, IWeightTensor tgtSelfMask, IWeightTensor decEncAttnMask, IWeightTensor tgtDimMask, int batchSize, IComputeGraph g)
        {
            int tgtSeqLen = tgtInputs.Rows / batchSize;
            int srcSeqLen = encOutputBatchFirst.Rows / batchSize;

            using (IWeightTensor posEmbedding = g.BuildPositionMatrix(tgtSeqLen, m_inputDim))
            {
                using (IWeightTensor posEmbeddingRepeat = g.RepeatRows(posEmbedding, batchSize, runGradient: false))
                {
                    tgtInputs = g.AddMul(posEmbeddingRepeat, tgtInputs, (float)Math.Sqrt(m_inputDim), runGradientW1: false, runGradientW2: true);
                }
            }

            tgtInputs = g.Dropout(tgtInputs, batchSize, m_dropoutRatio, inPlace: true);

            var tgtSelfMaskRep    = g.View(tgtSelfMask, dims: new long[] { 1, batchSize, tgtSeqLen, tgtSeqLen });
            var tgtSelfMaskRepExp = g.Expand(tgtSelfMaskRep, dims: new long[] { m_multiHeadNum, batchSize, tgtSeqLen, tgtSeqLen });

            var decEncAttnMaskRep    = g.View(decEncAttnMask, dims: new long[] { 1, batchSize, tgtSeqLen, srcSeqLen });
            var decEncAttnMaskRepExp = g.Expand(decEncAttnMaskRep, dims: new long[] { m_multiHeadNum, batchSize, tgtSeqLen, srcSeqLen });

            var tgtSelfMaskRepExpView    = g.View(tgtSelfMaskRepExp, dims: new long[] { m_multiHeadNum *batchSize *tgtSeqLen, tgtSeqLen });
            var decEncAttnMaskRepExpView = g.View(decEncAttnMaskRepExp, dims: new long[] { m_multiHeadNum *batchSize *tgtSeqLen, srcSeqLen });

            tgtSelfMaskRep.Dispose();
            tgtSelfMaskRepExp.Dispose();

            decEncAttnMaskRep.Dispose();
            decEncAttnMaskRepExp.Dispose();

            using (IComputeGraph subg = g.CreateSubGraph($"{m_name}_Decoder"))
            {
                for (int k = 0; k < m_selfAttns.Count; k++)
                {
                    tgtInputs = g.MaskFill(tgtInputs, tgtDimMask, 0.0f);

                    tgtInputs = m_selfAttns[k].Perform(tgtInputs, tgtInputs, tgtInputs, tgtSelfMaskRepExpView, batchSize, subg);
                    tgtInputs = m_encAttns[k].Perform(tgtInputs, encOutputBatchFirst, encOutputBatchFirst, decEncAttnMaskRepExpView, batchSize, subg);
                    tgtInputs = m_posFFNs[k].Perform(tgtInputs, batchSize, subg);
                }

                tgtInputs.UnbindFromComputeGraph();
            }

            tgtInputs = layerNorm.Norm(tgtInputs, g);

            //    tgtInputs = m_decoderFFLayer.Process(tgtInputs, batchSize, g);
            return(tgtInputs);
        }
Exemplo n.º 6
0
        /// <summary>
        /// Scaled multi-heads attention component with skip connectioned feed forward layers
        /// </summary>
        /// <param name="inputQ">The input Q tensor</param>
        /// <param name="inputK">The input K tensor</param>
        /// <param name="inputV">The input V tensor</param>
        /// <param name="batchSize">Batch size of input data set</param>
        /// <param name="graph">The instance of computing graph</param>
        /// <returns>Transformered output tensor</returns>
        public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph)
        {
            using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention"))
            {
                int seqLenQ = inputQ.Rows / batchSize;

                // SeqLenK must be euqal to SeqLenV
                int seqLenK = inputK.Rows / batchSize;
                int seqLenV = inputV.Rows / batchSize;

                IWeightTensor inputQNorm = layerNorm1.Norm(inputQ, g);
                IWeightTensor inputKNorm = (inputK == inputQ) ? inputQNorm : inputK; // layerNorm1.Norm(inputK, g);
                IWeightTensor inputVNorm = (inputK == inputV) ? inputKNorm : inputV; // layerNorm1.Norm(inputV, g);

                //Input projections
                IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d });
                IWeightTensor allK = g.View(g.Affine(inputKNorm, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d });
                IWeightTensor allV = g.View(g.Affine(inputVNorm, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d });

                //Multi-head attentions
                IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d });
                IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenK });
                IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenV, m_d });

                // Scaled softmax
                float         scale = 1.0f / (float)Math.Sqrt(m_d);
                IWeightTensor attn  = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale);
                IWeightTensor attn2 = g.View(attn, dims: new long[] { m_multiHeadNum *batchSize *seqLenQ, seqLenK });


                if (keyMask != null)
                {
                    // attn2 = g.Add(attn2, mask, runGradient2: false);
                    attn2 = g.MaskFill(attn2, keyMask, -1e9f);
                }

                IWeightTensor softmax  = g.Softmax(attn2, inPlace: true);
                IWeightTensor softmax2 = g.View(softmax, dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, seqLenK });
                IWeightTensor o        = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d });
                IWeightTensor W        = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d });

                // Output projection
                IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true);

                return(graph.Add(finalAttResults, inputQ));
            }
        }
Exemplo n.º 7
0
        public IWeightTensor Decode(IWeightTensor input, AttentionPreProcessResult attenPreProcessResult, int batchSize, IComputeGraph g)
        {
            IWeightTensor V          = input;
            IWeightTensor lastStatus = m_decoders.LastOrDefault().Cell;
            IWeightTensor context    = m_attentionLayer.Perform(lastStatus, attenPreProcessResult, batchSize, g);

            foreach (LSTMAttentionDecoderCell decoder in m_decoders)
            {
                IWeightTensor e = decoder.Step(context, V, g);
                V = e;
            }

            IWeightTensor eOutput = g.Dropout(V, batchSize, m_dropoutRatio, false);

            //   eOutput = m_decoderFFLayer.Process(eOutput, batchSize, g);

            return(eOutput);
        }
        /// <summary>
        /// Scaled multi-heads attention component with skip connectioned feed forward layers
        /// </summary>
        /// <param name="input">The input tensor</param>
        /// <param name="g">The instance of computing graph</param>
        /// <returns></returns>
        public IWeightTensor Perform(IWeightTensor input, int batchSize, IComputeGraph graph)
        {
            using (IComputeGraph g = graph.CreateSubGraph(m_name))
            {
                int           seqLen = input.Rows / batchSize;
                IWeightTensor nInput = layerNorm1.Norm(input, g);

                //Input projections
                IWeightTensor allQ = g.View(g.Affine(nInput, Q, Qb), batchSize, seqLen, m_multiHeadNum, m_d);
                IWeightTensor allK = g.View(g.Affine(nInput, K, Kb), batchSize, seqLen, m_multiHeadNum, m_d);
                IWeightTensor allV = g.View(g.Affine(nInput, V, Vb), batchSize, seqLen, m_multiHeadNum, m_d);

                //Multi-head attentions
                IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), m_multiHeadNum * batchSize, seqLen, m_d);
                IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), m_multiHeadNum * batchSize, m_d, seqLen);
                IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), m_multiHeadNum * batchSize, seqLen, m_d);

                // Scaled softmax
                float         scale = 1.0f / (float)Math.Sqrt(m_d);
                IWeightTensor attn  = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale);
                IWeightTensor attn2 = g.View(attn, m_multiHeadNum * batchSize * seqLen, seqLen);

                IWeightTensor softmax  = g.Softmax(attn2, inPlace: true);
                IWeightTensor softmax2 = g.View(softmax, m_multiHeadNum * batchSize, seqLen, seqLen);
                IWeightTensor o        = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * batchSize), m_multiHeadNum, batchSize, seqLen, m_d);
                IWeightTensor W        = g.View(g.Permute(o, 1, 2, 0, 3), batchSize * seqLen, m_multiHeadNum * m_d);

                // Output projection
                IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true);

                //Skip connection and layer normaliztion
                IWeightTensor normAddedAttResult = layerNorm2.AddNorm(finalAttResults, input, g);

                //Feed forward
                IWeightTensor ffnResult     = feedForwardLayer1.Process(normAddedAttResult, batchSize, g);
                IWeightTensor reluFFNResult = g.Relu(ffnResult);
                IWeightTensor ffn2Result    = feedForwardLayer2.Process(reluFFNResult, batchSize, g);

                //Skip connection and layer normaliztion
                IWeightTensor addFFNResult = graph.Add(ffn2Result, normAddedAttResult);

                return(addFFNResult);
            }
        }
Exemplo n.º 9
0
        private IWeightTensor AddPositionEmbedding(IComputeGraph g, IWeightTensor posEmbedding, int batchSize, int seqLen, IWeightTensor inputEmbs)
        {
            using (var posEmbeddingPeek = g.PeekRow(posEmbedding, 0, seqLen, false))
            {
                using (var posEmbeddingPeekView = g.View(posEmbeddingPeek, false, new long[] { 1, seqLen, this.m_modelMetaData.EmbeddingDim }))
                {
                    using (var posEmbeddingPeekViewExp = g.Expand(posEmbeddingPeekView, false, new long[] { batchSize, seqLen, this.m_modelMetaData.EmbeddingDim }))
                    {
                        inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize, seqLen, this.m_modelMetaData.EmbeddingDim });
                        inputEmbs = g.Add(inputEmbs, posEmbeddingPeekViewExp, true, false);
                        inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize *seqLen, this.m_modelMetaData.EmbeddingDim });
                    }
                }
            }

            inputEmbs = g.Dropout(inputEmbs, batchSize, this.m_dropoutRatio, true);

            return(inputEmbs);
        }
Exemplo n.º 10
0
        /// <summary>
        /// Scaled multi-heads attention component with skip connectioned feed forward layers
        /// </summary>
        /// <param name="inputQ">The input Q tensor</param>
        /// <param name="inputK">The input K tensor</param>
        /// <param name="inputV">The input V tensor</param>
        /// <param name="batchSize">Batch size of input data set</param>
        /// <param name="graph">The instance of computing graph</param>
        /// <returns>Transformered output tensor</returns>
        public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph)
        {
            if (m_sharedQKV)
            {
                throw new ArgumentException($"Layer '{m_name}' is in shared QKV mode, please call antoher Perform function with single input tensor.");
            }

            using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention"))
            {
                int seqLenQ = inputQ.Rows / batchSize;

                // SeqLenK must be euqal to SeqLenV
                int seqLenK = inputK.Rows / batchSize;
                int seqLenV = inputV.Rows / batchSize;

                IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g);
                //Input projections
                float         scale = 1.0f / (float)(m_inputDim);
                IWeightTensor allQ  = g.View(g.Affine(inputQNorm, Q, Qb, scale), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d });
                IWeightTensor allK  = g.View(g.Affine(inputK, K, Kb, scale), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d });
                IWeightTensor allV  = g.View(g.Affine(inputV, V, Vb, scale), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d });

                //Multi-head attentions
                IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d });
                IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenK });
                IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenV, m_d });

                // Scaled softmax
                scale = 1.0f / (float)(m_d);
                IWeightTensor attn    = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale);
                IWeightTensor softmax = g.Softmax(attn, keyMask, inPlace: true);
                IWeightTensor o       = g.View(g.MulBatch(softmax, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d });

                IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d });

                // Output projection
                IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true);

                return(graph.Add(finalAttResults, inputQ));
            }
        }
Exemplo n.º 11
0
        public static IWeightTensor AddPositionEmbedding(IComputeGraph g, IWeightTensor posEmbedding, int batchSize, IWeightTensor inputEmbs, float dropoutRatio)
        {
            var Column = posEmbedding.Columns;
            int seqLen = inputEmbs.Rows / batchSize;

            using (var posEmbeddingPeek = g.Peek(posEmbedding, 0, 0, seqLen))
            {
                using (var posEmbeddingPeekView = g.View(posEmbeddingPeek, dims: new long[] { 1, seqLen, Column }))
                {
                    using (var posEmbeddingPeekViewExp = g.Expand(posEmbeddingPeekView, dims: new long[] { batchSize, seqLen, Column }))
                    {
                        inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize, seqLen, Column });
                        inputEmbs = g.Add(inputEmbs, posEmbeddingPeekViewExp, inPlace: true);
                        inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize *seqLen, Column });
                    }
                }
            }

            inputEmbs = g.Dropout(inputEmbs, batchSize, dropoutRatio, inPlace: true);

            return(inputEmbs);
        }
Exemplo n.º 12
0
        /// <summary>
        /// Transformer encoder
        /// </summary>
        /// <param name="rawInputs"></param>
        /// <param name="g"></param>
        /// <returns></returns>
        public IWeightTensor Encode(IWeightTensor inputs, IWeightTensor selfMask, IWeightTensor dimMask, int batchSize, IComputeGraph g)
        {
            int seqLen = inputs.Rows / batchSize;

            using (IWeightTensor posEmbedding = g.BuildPositionMatrix(seqLen, m_inputDim))
            {
                using (IWeightTensor posEmbeddingRepeat = g.RepeatRows(posEmbedding, batchSize, runGradient: false))
                {
                    inputs = g.AddMul(posEmbeddingRepeat, inputs, (float)Math.Sqrt(m_inputDim), runGradientW1: false, runGradientW2: true);
                }
            }

            inputs = g.Dropout(inputs, batchSize, m_dropoutRatio, inPlace: true);

            var selfMaskRep               = g.View(selfMask, dims: new long[] { 1, batchSize, seqLen, seqLen });
            var multiHeadhSelfMaskRep     = g.Expand(selfMaskRep, dims: new long[] { m_multiHeadNum, batchSize, seqLen, seqLen });
            var multiHeadhSelfMaskRepView = g.View(multiHeadhSelfMaskRep, dims: new long[] { m_multiHeadNum *batchSize *seqLen, seqLen });

            selfMaskRep.Dispose();
            multiHeadhSelfMaskRep.Dispose();

            using (IComputeGraph subg = g.CreateSubGraph($"{m_name}_Encoder"))
            {
                for (int k = 0; k < m_encoders.Count; k++)
                {
                    inputs = g.MaskFill(inputs, dimMask, 0.0f);

                    inputs = m_encoders[k].Perform(inputs, inputs, inputs, multiHeadhSelfMaskRepView, batchSize, subg);
                    inputs = m_posFFNs[k].Perform(inputs, batchSize, subg);
                }
                inputs.UnbindFromComputeGraph();
            }


            inputs = layerNorm.Norm(inputs, g);

            return(inputs);
        }
Exemplo n.º 13
0
        private IWeightTensor AddPositionEmbedding(IComputeGraph g, IWeightTensor posEmbedding, int batchSize, int seqLen, IWeightTensor inputEmbs)
        {
            var Column = posEmbedding.Columns;

            inputEmbs = g.Mul(inputEmbs, (float)Math.Sqrt(m_modelMetaData.HiddenDim));

            using (var posEmbeddingPeek = g.PeekRow(posEmbedding, 0, seqLen, false))
            {
                using (var posEmbeddingPeekView = g.View(posEmbeddingPeek, runGradient: false, dims: new long[] { 1, seqLen, Column }))
                {
                    using (var posEmbeddingPeekViewExp = g.Expand(posEmbeddingPeekView, runGradient: false, dims: new long[] { batchSize, seqLen, Column }))
                    {
                        inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize, seqLen, Column });
                        inputEmbs = g.Add(inputEmbs, posEmbeddingPeekViewExp, true, false);
                        inputEmbs = g.View(inputEmbs, dims: new long[] { batchSize *seqLen, Column });
                    }
                }
            }

            inputEmbs = g.Dropout(inputEmbs, batchSize, m_dropoutRatio, inPlace: true);

            return(inputEmbs);
        }
Exemplo n.º 14
0
        /// <summary>
        /// Decode output sentences in training
        /// </summary>
        /// <param name="outputSentences">In training mode, they are golden target sentences, otherwise, they are target sentences generated by the decoder</param>
        /// <param name="g"></param>
        /// <param name="encodedOutputs"></param>
        /// <param name="decoder"></param>
        /// <param name="decoderFFLayer"></param>
        /// <param name="embedding"></param>
        /// <returns></returns>
        private float Decode(List <List <string> > outputSentences, IComputeGraph g, IWeightTensor encodedOutputs, AttentionDecoder decoder, FeedForwardLayer decoderFFLayer, IWeightTensor embedding,
                             int batchSize, bool isTraining = true)
        {
            float cost = 0.0f;

            int[] ix_inputs = new int[batchSize];
            for (int i = 0; i < ix_inputs.Length; i++)
            {
                ix_inputs[i] = (int)SENTTAGS.START;
            }

            // Initialize variables accoridng to current mode
            var           originalOutputLengths = isTraining ? ParallelCorpus.PadSentences(outputSentences) : null;
            int           seqLen       = isTraining ? outputSentences[0].Count : 64;
            var           dropoutRatio = isTraining ? m_dropoutRatio : 0.0f;
            HashSet <int> setEndSentId = isTraining ? null : new HashSet <int>();

            if (!isTraining)
            {
                if (outputSentences.Count != 0)
                {
                    throw new ArgumentException($"The list for output sentences must be empty if current is not in training mode.");
                }
                for (int i = 0; i < batchSize; i++)
                {
                    outputSentences.Add(new List <string>());
                }
            }

            // Pre-process for attention model
            var attPreProcessResult = decoder.PreProcess(encodedOutputs, batchSize, g);

            for (int i = 0; i < seqLen; i++)
            {
                //Get embedding for all sentence in the batch at position i
                List <IWeightTensor> inputs = new List <IWeightTensor>();
                for (int j = 0; j < batchSize; j++)
                {
                    inputs.Add(g.PeekRow(embedding, ix_inputs[j]));
                }
                var inputsM = g.ConcatRows(inputs);

                //Decode output sentence at position i
                var eOutput = decoder.Decode(inputsM, attPreProcessResult, batchSize, g);
                eOutput = g.Dropout(eOutput, batchSize, dropoutRatio, true);
                eOutput = decoderFFLayer.Process(eOutput, batchSize, g);

                //Softmax for output
                using (var probs = g.Softmax(eOutput, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        //Calculate loss for each word in the batch
                        for (int k = 0; k < batchSize; k++)
                        {
                            using (var probs_k = g.PeekRow(probs, k, runGradients: false))
                            {
                                var ix_targets_k = m_modelMetaData.Vocab.GetTargetWordIndex(outputSentences[k][i]);
                                var score_k      = probs_k.GetWeightAt(ix_targets_k);
                                if (i < originalOutputLengths[k])
                                {
                                    cost += (float)-Math.Log(score_k);
                                }

                                probs_k.SetWeightAt(score_k - 1, ix_targets_k);
                                ix_inputs[k] = ix_targets_k;
                            }
                        }
                        eOutput.CopyWeightsToGradients(probs);
                    }
                    else
                    {
                        // Output "i"th target word
                        var targetIdx   = g.Argmax(probs, 1);
                        var targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(targetIdx.ToList());
                        for (int j = 0; j < targetWords.Count; j++)
                        {
                            if (setEndSentId.Contains(j) == false)
                            {
                                outputSentences[j].Add(targetWords[j]);

                                if (targetWords[j] == ParallelCorpus.EOS)
                                {
                                    setEndSentId.Add(j);
                                }
                            }
                        }

                        ix_inputs = targetIdx;
                    }
                }

                if (isTraining)
                {
                    ////Hacky: Run backward for last feed forward layer and dropout layer in order to save memory usage, since it's not time sequence dependency
                    g.RunTopBackward();
                    if (m_dropoutRatio > 0.0f)
                    {
                        g.RunTopBackward();
                    }
                }
                else
                {
                    if (setEndSentId.Count == batchSize)
                    {
                        // All target sentences in current batch are finished, so we exit.
                        break;
                    }
                }
            }

            return(cost);
        }
Exemplo n.º 15
0
        /// <summary>
        /// Scaled multi-heads attention component with skip connectioned feed forward layers
        /// </summary>
        /// <param name="inputQ">The input Q tensor</param>
        /// <param name="inputK">The input K tensor</param>
        /// <param name="inputV">The input V tensor</param>
        /// <param name="keyMask">The mask for softmax</param>
        /// <param name="batchSize">Batch size of input data set</param>
        /// <param name="graph">The instance of computing graph</param>
        /// <returns>Transformered output tensor</returns>
        public (IWeightTensor, IWeightTensor) Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph, bool outputAttenWeights = false, Dictionary <string, IWeightTensor> cachedTensors = null)
        {
            string keyName = $"{m_name}_MultiHeadAttention";

            using IComputeGraph g = graph.CreateSubGraph(keyName);
            int seqLenQ = inputQ.Rows / batchSize;

            // SeqLenK must be euqal to SeqLenV
            int seqLenK = inputK.Rows / batchSize;
            int seqLenV = inputV.Rows / batchSize;

            IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g);

            //Input projections
            IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d });

            //Multi-head attentions
            IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d });


            IWeightTensor Ks = null;
            IWeightTensor Vs = null;

            if (cachedTensors == null) // We don't use any cached tensors
            {
                IWeightTensor allK = g.View(g.Affine(inputK, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d });
                IWeightTensor allV = g.View(g.Affine(inputV, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d });
                Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK });
                Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d });
            }
            else
            {
                string KsCacheName = keyName + "_" + nameof(Ks);
                string VsCacheName = keyName + "_" + nameof(Vs);

                if (cachedTensors.ContainsKey(KsCacheName) == false)
                {
                    IWeightTensor allK = g.View(g.Affine(inputK, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d });
                    Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK });
                    cachedTensors.Add(KsCacheName, Ks.CopyWeightsRef(KsCacheName, Ks.NeedGradient));
                }
                else
                {
                    Ks = cachedTensors[KsCacheName];
                }

                if (cachedTensors.ContainsKey(VsCacheName) == false)
                {
                    IWeightTensor allV = g.View(g.Affine(inputV, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d });
                    Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d });
                    cachedTensors.Add(VsCacheName, Vs.CopyWeightsRef(VsCacheName, Vs.NeedGradient));
                }
                else
                {
                    Vs = cachedTensors[VsCacheName];
                }
            }


            // Scaled softmax
            float scale = 1.0f / (float)(Math.Sqrt(m_d));
            var   attn  = g.MulBatch(Qs, Ks, scale);

            attn = g.View(attn, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenK });

            if (keyMask != null)
            {
                attn = g.Add(attn, keyMask, inPlace: true);
            }

            var attnProbs = g.Softmax(attn, inPlace: true);

            IWeightTensor sumAttnWeights = null;

            if (outputAttenWeights)
            {
                sumAttnWeights = g.Select(attnProbs, 1, 0);
                for (int i = 1; i < m_multiHeadNum; i++)
                {
                    var tmp = g.Select(attnProbs, 1, i);
                    sumAttnWeights = g.Add(sumAttnWeights, tmp);
                }

                sumAttnWeights = graph.Div(sumAttnWeights, (float)m_multiHeadNum);
                sumAttnWeights = graph.View(sumAttnWeights, new long[] { batchSize *seqLenQ, seqLenK });
            }

            attnProbs = g.View(attnProbs, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenK });

            IWeightTensor o = g.View(g.MulBatch(attnProbs, Vs), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d });
            IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d });

            // Output projection
            IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true);
            IWeightTensor result          = graph.Add(finalAttResults, inputQ, inPlace: true);


            return(result, sumAttnWeights);
        }
Exemplo n.º 16
0
        /// <summary>
        /// Decode output sentences in training
        /// </summary>
        /// <param name="outputSentences"></param>
        /// <param name="g"></param>
        /// <param name="encodedOutputs"></param>
        /// <param name="decoder"></param>
        /// <param name="Whd"></param>
        /// <param name="bd"></param>
        /// <param name="Embedding"></param>
        /// <param name="predictSentence"></param>
        /// <returns></returns>
        private float Decode(List <List <string> > outputSentences, IComputeGraph g, IWeightMatrix encodedOutputs, AttentionDecoder decoder, FeedForwardLayer decoderFFLayer, IWeightMatrix Embedding, out List <List <string> > predictSentence)
        {
            predictSentence = null;
            float cost = 0.0f;
            var   attPreProcessResult = decoder.PreProcess(encodedOutputs, g);

            var originalOutputLengths = PadSentences(outputSentences);
            int seqLen = outputSentences[0].Count;

            int[] ix_inputs  = new int[m_batchSize];
            int[] ix_targets = new int[m_batchSize];
            for (int i = 0; i < ix_inputs.Length; i++)
            {
                ix_inputs[i] = (int)SENTTAGS.START;
            }

            for (int i = 0; i < seqLen + 1; i++)
            {
                //Get embedding for all sentence in the batch at position i
                List <IWeightMatrix> inputs = new List <IWeightMatrix>();
                for (int j = 0; j < m_batchSize; j++)
                {
                    List <string> OutputSentence = outputSentences[j];

                    ix_targets[j] = (int)SENTTAGS.UNK;
                    if (i >= seqLen)
                    {
                        ix_targets[j] = (int)SENTTAGS.END;
                    }
                    else
                    {
                        if (m_tgtWordToIndex.ContainsKey(OutputSentence[i]))
                        {
                            ix_targets[j] = m_tgtWordToIndex[OutputSentence[i]];
                        }
                    }

                    var x = g.PeekRow(Embedding, ix_inputs[j]);

                    inputs.Add(x);
                }

                var inputsM = g.ConcatRows(inputs);

                //Decode output sentence at position i
                var eOutput = decoder.Decode(inputsM, attPreProcessResult, g);
                if (m_dropoutRatio > 0.0f)
                {
                    eOutput = g.Dropout(eOutput, m_dropoutRatio);
                }

                var o = decoderFFLayer.Process(eOutput, g);

                //Softmax for output
//                var o = g.MulAdd(eOutput, Whd, bds);
                var probs = g.Softmax(o, false);

                o.ReleaseWeight();

                //Calculate loss for each word in the batch
                List <IWeightMatrix> probs_g = g.UnFolderRow(probs, m_batchSize, false);
                for (int k = 0; k < m_batchSize; k++)
                {
                    var probs_k = probs_g[k];
                    var score_k = probs_k.GetWeightAt(ix_targets[k]);

                    if (i < originalOutputLengths[k] + 1)
                    {
                        cost += (float)-Math.Log(score_k);
                    }

                    probs_k.SetWeightAt(score_k - 1, ix_targets[k]);

                    ix_inputs[k] = ix_targets[k];
                    probs_k.Dispose();
                }

                o.SetGradientByWeight(probs);

                //Hacky: Run backward for last feed forward layer and dropout layer in order to save memory usage, since it's not time sequence dependency
                g.RunTopBackward();
                g.RunTopBackward();
                if (m_dropoutRatio > 0.0f)
                {
                    g.RunTopBackward();
                }
            }

            return(cost);
        }
Exemplo n.º 17
0
        public IWeightTensor Process(IWeightTensor inputT, int batchSize, IComputeGraph g)
        {
            var res = g.Affine(inputT, this.m_Whd, this.m_Bd);

            return(g.Dropout(res, batchSize, this.m_dropoutRatio, true));
        }
Exemplo n.º 18
0
        public IWeightTensor Process(IWeightTensor inputT, int batchSize, IComputeGraph g)
        {
            IWeightTensor res = g.Affine(inputT, m_Whd, m_Bd);

            return(g.Dropout(res, batchSize, m_dropoutRatio, inPlace: true));
        }
Exemplo n.º 19
0
        /// <summary>
        /// Scaled multi-heads attention component with skip connectioned feed forward layers
        /// </summary>
        /// <param name="inputQ">The input Q tensor</param>
        /// <param name="inputK">The input K tensor</param>
        /// <param name="inputV">The input V tensor</param>
        /// <param name="keyMask">The mask for softmax</param>
        /// <param name="batchSize">Batch size of input data set</param>
        /// <param name="graph">The instance of computing graph</param>
        /// <returns>Transformered output tensor</returns>
        public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph)
        {
            using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention"))
            {
                int seqLenQ = inputQ.Rows / batchSize;

                // SeqLenK must be euqal to SeqLenV
                int seqLenK = inputK.Rows / batchSize;
                int seqLenV = inputV.Rows / batchSize;

                IWeightTensor inputQNorm = layerNormQ.Norm(inputQ, g);
                if (inputK == inputQ)
                {
                    inputK = inputQNorm;
                }
                if (inputV == inputQ)
                {
                    inputV = inputQNorm;
                }

                //Input projections
                float         scale = 1.0f;
                IWeightTensor allQ  = g.View(g.Affine(inputQNorm, Q, Qb, scale), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d });
                IWeightTensor allK  = g.View(g.Affine(inputK, K, Kb, scale), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d });
                IWeightTensor allV  = g.View(g.Affine(inputV, V, Vb, scale), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d });

                //Multi-head attentions
                IWeightTensor Qs = g.View(g.AsContiguous(g.Transpose(allQ, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, m_d });
                IWeightTensor Ks = g.View(g.AsContiguous(g.Transpose(g.Transpose(allK, 1, 2), 2, 3)), dims: new long[] { batchSize *m_multiHeadNum, m_d, seqLenK });
                IWeightTensor Vs = g.View(g.AsContiguous(g.Transpose(allV, 1, 2)), dims: new long[] { batchSize *m_multiHeadNum, seqLenV, m_d });

                // Scaled softmax
                scale = 1.0f / (float)(Math.Sqrt(m_d));
                IWeightTensor attn = g.MulBatch(Qs, Ks, batchSize * m_multiHeadNum, scale);

                if (keyMask != null)
                {
                    using (var keyMaskView = g.View(keyMask, runGradient: false, dims: new long[] { batchSize, 1, seqLenQ, seqLenK }))
                    {
                        using (var keyMaskViewExp = g.Expand(keyMaskView, runGradient: false, dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, seqLenK }))
                        {
                            using (var keyMaskViewExpConti = g.AsContiguous(keyMaskViewExp, runGradient: false))
                            {
                                using (var keyMaskViewExpContiView = g.View(keyMaskViewExpConti, runGradient: false, dims: new long[] { batchSize *m_multiHeadNum, seqLenQ, seqLenK }))
                                {
                                    attn = g.Add(attn, keyMaskViewExpContiView, runGradient1: true, runGradient2: false);
                                }
                            }
                        }
                    }
                }

                IWeightTensor softmax = g.Softmax(attn, inPlace: true);

                IWeightTensor o = g.View(g.MulBatch(softmax, Vs, batchSize * m_multiHeadNum), dims: new long[] { batchSize, m_multiHeadNum, seqLenQ, m_d });
                IWeightTensor W = g.View(g.AsContiguous(g.Transpose(o, 1, 2)), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d });

                // Output projection
                IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true);

                return(graph.Add(finalAttResults, inputQ));
            }
        }