Exemplo n.º 1
0
        // function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

        /**
         * The WEIGHTED-SAMPLE function in Figure 14.15.
         *
         * @param e
         *            observed values for variables E
         * @param bn
         *            a Bayesian network specifying joint distribution
         *            <b>P</b>(X<sub>1</sub>,...,X<sub>n</sub>)
         * @return return <b>x</b>, w - an event with its associated weight.
         */
        public Pair <IMap <IRandomVariable, object>, double> weightedSample(IBayesianNetwork bn, AssignmentProposition[] e)
        {
            // w <- 1;
            double w = 1.0;
            // <b>x</b> <- an event with n elements initialized from e
            IMap <IRandomVariable, object> x = CollectionFactory.CreateInsertionOrderedMap <IRandomVariable, object>();

            foreach (AssignmentProposition ap in e)
            {
                x.Put(ap.getTermVariable(), ap.getValue());
            }

            // foreach variable X<sub>i</sub> in X<sub>1</sub>,...,X<sub>n</sub> do
            foreach (IRandomVariable Xi in bn.GetVariablesInTopologicalOrder())
            {
                // if X<sub>i</sub> is an evidence variable with value x<sub>i</sub>
                // in e
                if (x.ContainsKey(Xi))
                {
                    // then w <- w * P(X<sub>i</sub> = x<sub>i</sub> |
                    // parents(X<sub>i</sub>))
                    w *= bn.GetNode(Xi)
                         .GetCPD()
                         .GetValue(ProbUtil.getEventValuesForXiGivenParents(bn.GetNode(Xi), x));
                }
                else
                {
                    // else <b>x</b>[i] <- a random sample from
                    // <b>P</b>(X<sub>i</sub> | parents(X<sub>i</sub>))
                    x.Put(Xi, ProbUtil.randomSample(bn.GetNode(Xi), x, randomizer));
                }
            }
            // return <b>x</b>, w
            return(new Pair <IMap <IRandomVariable, object>, double>(x, w));
        }
Exemplo n.º 2
0
        // function GIBBS-ASK(X, e, bn, N) returns an estimate of <b>P</b>(X|e)

        /**
         * The GIBBS-ASK algorithm in Figure 14.16. For answering queries given
         * evidence in a Bayesian Network.
         *
         * @param X
         *            the query variables
         * @param e
         *            observed values for variables E
         * @param bn
         *            a Bayesian network specifying joint distribution
         *            <b>P</b>(X<sub>1</sub>,...,X<sub>n</sub>)
         * @param Nsamples
         *            the total number of samples to be generated
         * @return an estimate of <b>P</b>(X|e)
         */
        public ICategoricalDistribution gibbsAsk(IRandomVariable[] X,
                                                 AssignmentProposition[] e, IBayesianNetwork bn, int Nsamples)
        {
            // local variables: <b>N</b>, a vector of counts for each value of X,
            // initially zero
            double[] N = new double[ProbUtil.expectedSizeOfCategoricalDistribution(X)];
            // Z, the nonevidence variables in bn
            ISet <IRandomVariable> Z = CollectionFactory.CreateSet <IRandomVariable>(bn.GetVariablesInTopologicalOrder());

            foreach (AssignmentProposition ap in e)
            {
                Z.Remove(ap.getTermVariable());
            }
            // <b>x</b>, the current state of the network, initially copied from e
            IMap <IRandomVariable, object> x = CollectionFactory.CreateInsertionOrderedMap <IRandomVariable, object>();

            foreach (AssignmentProposition ap in e)
            {
                x.Put(ap.getTermVariable(), ap.getValue());
            }

            // initialize <b>x</b> with random values for the variables in Z
            foreach (IRandomVariable Zi in Z)
            {
                x.Put(Zi, ProbUtil.randomSample(bn.GetNode(Zi), x, randomizer));
            }

            // for j = 1 to N do
            for (int j = 0; j < Nsamples; j++)
            {
                // for each Z<sub>i</sub> in Z do
                foreach (IRandomVariable Zi in Z)
                {
                    // set the value of Z<sub>i</sub> in <b>x</b> by sampling from
                    // <b>P</b>(Z<sub>i</sub>|mb(Z<sub>i</sub>))
                    x.Put(Zi, ProbUtil.mbRandomSample(bn.GetNode(Zi), x, randomizer));
                }
                // Note: moving this outside the previous for loop,
                // as described in fig 14.6, as will only work
                // correctly in the case of a single query variable X.
                // However, when multiple query variables, rare events
                // will get weighted incorrectly if done above. In case
                // of single variable this does not happen as each possible
                // value gets * |Z| above, ending up with the same ratios
                // when normalized (i.e. its still more efficient to place
                // outside the loop).
                //
                // <b>N</b>[x] <- <b>N</b>[x] + 1
                // where x is the value of X in <b>x</b>
                N[ProbUtil.indexOf(X, x)] += 1.0;
            }
            // return NORMALIZE(<b>N</b>)
            return(new ProbabilityTable(N, X).normalize());
        }
Exemplo n.º 3
0
        // function PRIOR-SAMPLE(bn) returns an event sampled from the prior
        // specified by bn

        /**
         * The PRIOR-SAMPLE algorithm in Figure 14.13. A sampling algorithm that
         * generates events from a Bayesian network. Each variable is sampled
         * according to the conditional distribution given the values already
         * sampled for the variable's parents.
         *
         * @param bn
         *            a Bayesian network specifying joint distribution
         *            <b>P</b>(X<sub>1</sub>,...,X<sub>n</sub>)
         * @return an event sampled from the prior specified by bn
         */
        public IMap <IRandomVariable, object> priorSample(IBayesianNetwork bn)
        {
            // x <- an event with n elements
            IMap <IRandomVariable, object> x = CollectionFactory.CreateInsertionOrderedMap <IRandomVariable, object>();

            // foreach variable X<sub>i</sub> in X<sub>1</sub>,...,X<sub>n</sub> do
            foreach (IRandomVariable Xi in bn.GetVariablesInTopologicalOrder())
            {
                // x[i] <- a random sample from
                // <b>P</b>(X<sub>i</sub> | parents(X<sub>i</sub>))
                x.Put(Xi, ProbUtil.randomSample(bn.GetNode(Xi), x, randomizer));
            }
            // return x
            return(x);
        }
Exemplo n.º 4
0
        //
        // PRIVATE METHODS
        //
        private IFactor makeFactor(IRandomVariable var, AssignmentProposition[] e, IBayesianNetwork bn)
        {
            INode n = bn.GetNode(var);

            if (!(n is IFiniteNode))
            {
                throw new IllegalArgumentException("Elimination-Ask only works with finite Nodes.");
            }
            IFiniteNode fn = (IFiniteNode)n;
            ICollection <AssignmentProposition> evidence = CollectionFactory.CreateQueue <AssignmentProposition>();

            foreach (AssignmentProposition ap in e)
            {
                if (fn.GetCPT().Contains(ap.getTermVariable()))
                {
                    evidence.Add(ap);
                }
            }

            return(fn.GetCPT().GetFactorFor(evidence.ToArray()));
        }
Exemplo n.º 5
0
            public double posteriorForParents(IRandomVariable rv)
            {
                INode n = bn.GetNode(rv);

                if (!(n is IFiniteNode))
                {
                    throw new IllegalArgumentException("Enumeration-Ask only works with finite Nodes.");
                }
                IFiniteNode fn = (IFiniteNode)n;

                object[] vals = new object[1 + fn.GetParents().Size()];
                int      idx  = 0;

                foreach (INode pn in n.GetParents())
                {
                    vals[idx] = extendedValues[varIdxs.Get(pn.GetRandomVariable())];
                    idx++;
                }
                vals[idx] = extendedValues[varIdxs.Get(rv)];

                return(fn.GetCPT().GetValue(vals));
            }