Exemplo n.º 1
0
    public object Clone()
    {
        var clone        = Of(InputLayer.ColsCount, OutputLayer.ColsCount, ActivationsFunctions);
        var cloneWeights = new List <Matrix>();

        foreach (var weight in Weights)
        {
            var currentWeight = new Matrix(weight.RowsCount, weight.ColsCount);

            for (var rowI = 0; rowI < currentWeight.RowsCount; rowI++)
            {
                for (var colJ = 0; colJ < currentWeight.ColsCount; colJ++)
                {
                    currentWeight[rowI, colJ] = weight[rowI, colJ];
                }
            }

            cloneWeights.Add(currentWeight);
        }

        var cloneBiases = new List <double>(Biases);

        clone.Weights = cloneWeights;
        clone.Biases  = cloneBiases;

        var neuronsInHiddenLayers = HiddenLayers.Select(layer => layer.ColsCount).ToArray();

        clone.InitializeHiddenLayers(neuronsInHiddenLayers);

        return(clone);
    }
Exemplo n.º 2
0
 public NeuralNetworkGene GetGenes()
 {
     return(new NeuralNetworkGene
     {
         InputGene = InputLayer.GetGenes(),
         HiddenGenes = HiddenLayers.Select(l => l.GetGenes()).ToList(),
         OutputGene = OutputLayer.GetGenes()
     });
 }
Exemplo n.º 3
0
    public IPredictorAlgorithmSettings Clone() => new NeuralNetworkSettingsEntity
    {
        Device         = Device,
        PredictionType = PredictionType,

        HiddenLayers      = HiddenLayers.Select(hl => hl.Clone()).ToMList(),
        OutputActivation  = OutputActivation,
        OutputInitializer = OutputInitializer,


        LossFunction      = LossFunction,
        EvalErrorFunction = EvalErrorFunction,
        Optimizer         = Optimizer,
        LearningRate      = LearningRate,

        MinibatchSize               = MinibatchSize,
        NumMinibatches              = NumMinibatches,
        BestResultFromLast          = BestResultFromLast,
        SaveProgressEvery           = SaveProgressEvery,
        SaveValidationProgressEvery = SaveValidationProgressEvery,
    };