public void GaussianMixtureModelTest7()
        {
            double[][] values =
            {
                new double[] {  0 },
                new double[] {  1 },
                new double[] {  2 },
                new double[] {  3 },
                new double[] {  4 },
                new double[] {  5 },
                new double[] {  6 },
                new double[] {  7 },
                new double[] {  8 },
                new double[] {  9 },
                new double[] { 10 },
                new double[] { 11 },
                new double[] { 12 }
            };

            double[] weights =
            {
                1, 3, 5, 4, 3, 5, 10, 17, 12, 6, 3, 1, 0
            };

            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            gmm.Compute(values, new GaussianMixtureModelOptions()
            {
                Weights = weights
            });

            int[] classifications = gmm.Gaussians.Nearest(values);
        }
Exemplo n.º 2
0
        public void GaussianMixtureModelTest5()
        {
            Accord.Math.Tools.SetupGenerator(0);

            MemoryStream stream = new MemoryStream(Resources.CircleWithWeights);
            ExcelReader  reader = new ExcelReader(stream, xlsx: false);

            DataTable table = reader.GetWorksheet("Sheet1");

            double[,] matrix = table.ToMatrix();

            double[][] points  = matrix.Submatrix(null, 0, 1).ToArray();
            double[]   weights = matrix.GetColumn(2);

            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            gmm.Compute(points, new GaussianMixtureModelOptions()
            {
                Weights = weights
            });

            Assert.AreEqual(-0.010550720353814949, gmm.Gaussians[0].Mean[0]);
            Assert.AreEqual(0.40799698773355553, gmm.Gaussians[0].Mean[1]);

            Assert.AreEqual(0.011896812071918696, gmm.Gaussians[1].Mean[0]);
            Assert.AreEqual(-0.40400708592859663, gmm.Gaussians[1].Mean[1]);
        }
        public void GaussianMixtureModelConstructorTest()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // Test Samples
            double[][] samples =
            {
                new double[] { 0, 1 },
                new double[] { 1, 2 },
                new double[] { 1, 1 },
                new double[] { 0, 7 },
                new double[] { 1, 1 },
                new double[] { 6, 2 },
                new double[] { 6, 5 },
                new double[] { 5, 1 },
                new double[] { 7, 1 },
                new double[] { 5, 1 }
            };

            double[] sample = samples[0];


            // Create a new Gaussian Mixture Model with 2 components
            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            // Compute the model (estimate)
            gmm.Compute(samples, 0.0001);

            // Classify a single sample
            int c = gmm.Gaussians.Nearest(sample);

            Assert.AreEqual(2, gmm.Gaussians.Count);

            int first = 0;

            for (int i = 0; i < samples.Length; i++)
            {
                sample = samples[i];
                c      = gmm.Gaussians.Nearest(sample);

                if (i == 0)
                {
                    first = c;
                }

                if (i < 5)
                {
                    Assert.AreEqual(c, first);
                }
                else
                {
                    Assert.AreNotEqual(c, first);
                }
            }
        }
Exemplo n.º 4
0
        public void GaussianMixtureModelTest4()
        {
            // Suppose we have a weighted data set. Those are the input points:
            double[][] points =
            {
                new double[] { 0 }, new double[] { 3 }, new double[] {  1 },
                new double[] { 7 }, new double[] { 3 }, new double[] {  5 },
                new double[] { 1 }, new double[] { 2 }, new double[] { -1 },
                new double[] { 2 }, new double[] { 7 }, new double[] {  6 },
                new double[] { 8 }, new double[] { 6 } // (14 points)
            };

            // And those are their respective unormalized weights:
            double[] weights = { 10, 1, 1, 2, 2, 1, 1, 1, 8, 1, 2, 5, 1, 1 }; // (14 weights)

            // with weights
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);

                gmm.Compute(points, new GaussianMixtureModelOptions()
                {
                    Weights = weights
                });


                Assert.AreEqual(6.420790676635443, gmm.Gaussians[0].Mean[0]);
                Assert.AreEqual(0.290536871335858, gmm.Gaussians[1].Mean[0]);

                Assert.AreEqual(0.32294476897888613, gmm.Gaussians[0].Proportion);
                Assert.AreEqual(0.67705523102111387, gmm.Gaussians[1].Proportion);
            }

            // without weights
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);

                gmm.Compute(points);

                Assert.AreEqual(6.5149525060859865, gmm.Gaussians[0].Mean[0]);
                Assert.AreEqual(1.4191977895308987, gmm.Gaussians[1].Mean[0]);

                Assert.AreEqual(0.42235760973845654, gmm.Gaussians[0].Proportion);
                Assert.AreEqual(0.57764239026154351, gmm.Gaussians[1].Proportion);
            }
        }
        public void GaussianMixtureModelConstructorTest()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // Test Samples
            double[][] samples =
            {
                new double[] { 0, 1 },
                new double[] { 1, 2 }, 
                new double[] { 1, 1 },
                new double[] { 0, 7 },
                new double[] { 1, 1 },
                new double[] { 6, 2 },
                new double[] { 6, 5 },
                new double[] { 5, 1 },
                new double[] { 7, 1 },
                new double[] { 5, 1 }
            };

            double[] sample = samples[0];


            // Create a new Gaussian Mixture Model with 2 components
            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            // Compute the model (estimate)
            gmm.Compute(samples, 0.0001);

            // Classify a single sample
            int c = gmm.Gaussians.Nearest(sample);

            Assert.AreEqual(2, gmm.Gaussians.Count);

            int first = 0;

            for (int i = 0; i < samples.Length; i++)
            {
                sample = samples[i];
                c = gmm.Gaussians.Nearest(sample);

                if (i == 0)
                    first = c;

                if (i < 5)
                {
                    Assert.AreEqual(c, first);
                }
                else
                {
                    Assert.AreNotEqual(c, first);
                }
            }
        }
        public void GaussianMixtureModelTest2()
        {
            Accord.Math.Tools.SetupGenerator(0);

            int height = 16;
            int width  = 16;

            var gmm = new GaussianMixtureModel(3);

            // gmm.Regularization = 0;

            Assert.AreEqual(3, gmm.Gaussians.Count);
            Assert.IsNull(gmm.Gaussians[0].Covariance);
            Assert.IsNull(gmm.Gaussians[0].Mean);


            double[][][] A = new double[3][][];
            A[0] = new double[height][];
            A[1] = new double[height][];
            A[2] = new double[height][];

            for (int j = 0; j < height; j++)
            {
                A[0][j] = new double[width];
                A[1][j] = new double[width];
                A[2][j] = new double[width];

                for (int k = 0; k < width; k++)
                {
                    A[0][j][k] = 102;
                    A[1][j][k] = 57;
                    A[2][j][k] = 200;
                }
            }

            double[][] B = Matrix.Stack(A);

            bool thrown = false;

            try
            {
                var result = gmm.Compute(B);
            }
            catch (NonPositiveDefiniteMatrixException)
            {
                thrown = true;
            }

            Assert.IsTrue(thrown);
        }
Exemplo n.º 7
0
        public void GaussianMixtureModelConstructorTest()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // Test Samples
            double[][] samples =
            {
                new double[] { 0, 1 },
                new double[] { 1, 2 },
                new double[] { 1, 1 },
                new double[] { 0, 7 },
                new double[] { 1, 1 },
                new double[] { 6, 2 },
                new double[] { 6, 5 },
                new double[] { 5, 1 },
                new double[] { 7, 1 },
                new double[] { 5, 1 }
            };

            double[] sample = samples[0];


            // Create a new Gaussian Mixture Model with 2 components
            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            // Compute the model (estimate)
            double ll = gmm.Compute(samples, 0.0001);

            Assert.AreEqual(-35.930732550698494, ll, 1e-10);

            Assert.AreEqual(2, gmm.Gaussians.Count);

            Assert.IsTrue(gmm.Gaussians.Means[0].IsEqual(new[] { 5.8, 2.0 }, 1e-3));
            Assert.IsTrue(gmm.Gaussians.Means[1].IsEqual(new[] { 0.6, 2.4 }, 1e-3));


            int[] c = samples.Apply(gmm.Clusters.Decide);

            for (int i = 0; i < samples.Length; i++)
            {
                double[] responses;
                int      e;
                responses = gmm.Gaussians.Probabilities(samples[i], out e);
                int a = responses.ArgMax();

                Assert.AreEqual(a, e);
                Assert.AreEqual(c[i], (i < 5) ? 1 : 0);
            }
        }
Exemplo n.º 8
0
        public void GaussianMixtureModelTest3()
        {
            Accord.Math.Tools.SetupGenerator(0);

            var gmm = new GaussianMixtureModel(3);

            Assert.AreEqual(3, gmm.Gaussians.Count);
            Assert.IsNull(gmm.Gaussians[0].Covariance);
            Assert.IsNull(gmm.Gaussians[0].Mean);


            double[][] B = Matrix.Random(56, 12).ToArray();

            double result = gmm.Compute(B);
        }
Exemplo n.º 9
0
        internal void Train()
        {
            logLike  = new double[maxK]; // Log-likelihood estimate for a given model and training set
            rissanen = new double[maxK]; // Rissanen estimate for a given model and training set
            mdl      = new double[maxK]; // Minimum description length for a given model and training set
            kVar     = new bool[maxK];
            for (int i = 0; i < maxK; ++i)
            {
                // Step 1: Make a GMM with K subclasses
                gmm = new GaussianMixtureModel(kVals[i]);

                // Step 2: fit the gmm to the projection data
                logLike[i] = gmm.Compute(currentProjection, 1e-3, 1.0);

                // Step 3: perform a classification to detect spurious classification
                kVar[i] = (kVals[i] == gmm.Classify(currentProjection).Distinct().ToArray().Length);

                // Step 4: Calculate the MDL for this K
                double L = (double)(kVals[i] * 3 - 1);
                rissanen[i] = 0.5 * L * Math.Log(currentProjection.Length);
                mdl[i]      = -logLike[i] + rissanen[i];
            }

            // Which value of K supported the MDL:
            int ind = Array.IndexOf(mdl, mdl.Min());

            // Find the value of K that supports the lowest mdl and is verified
            K = kVals[ind];
            while (!kVar[ind])
            {
                K = kVals[ind];
                ++ind;
            }

            // Recreate the gmm with the trained value of K
            gmm = new GaussianMixtureModel(K);
            double LL = gmm.Compute(currentProjection, 1e-3, 1.0);

            // Is this a functional classifier?
            if (gmm != null)
            {
                trained = true;
            }

            // Set the STD ellipsoid
            gmm.SetPValue(pValue);
        }
        public void GaussianMixtureModelConstructorTest()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // Test Samples
            double[][] samples =
            {
                new double[] { 0, 1 },
                new double[] { 1, 2 }, 
                new double[] { 1, 1 },
                new double[] { 0, 7 },
                new double[] { 1, 1 },
                new double[] { 6, 2 },
                new double[] { 6, 5 },
                new double[] { 5, 1 },
                new double[] { 7, 1 },
                new double[] { 5, 1 }
            };

            double[] sample = samples[0];


            // Create a new Gaussian Mixture Model with 2 components
            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            // Compute the model (estimate)
            double ll = gmm.Compute(samples, 0.0001);
            Assert.AreEqual(-35.930732550698494, ll, 1e-10);

            Assert.AreEqual(2, gmm.Gaussians.Count);

            Assert.IsTrue(gmm.Gaussians.Means[0].IsEqual(new[] { 5.8, 2.0 }, 1e-3));
            Assert.IsTrue(gmm.Gaussians.Means[1].IsEqual(new[] { 0.6, 2.4 }, 1e-3));


            int[] c = samples.Apply(gmm.Clusters.Nearest);

            for (int i = 0; i < samples.Length; i++)
            {
                double[] responses;
                int e = gmm.Gaussians.Nearest(samples[i], out responses);
                int a = responses.ArgMax();

                Assert.AreEqual(a, e);
                Assert.AreEqual(c[i], (i < 5) ? 1 : 0);
            }
        }
Exemplo n.º 11
0
        public void GaussianMixtureModelTest5()
        {
            Accord.Math.Tools.SetupGenerator(0);

            string path = Path.Combine(TestContext.CurrentContext.TestDirectory, "Resources", "CircleWithWeights.xls");

            ExcelReader reader = new ExcelReader(path);

            DataTable table = reader.GetWorksheet("Sheet1");

            double[,] matrix = table.ToMatrix();

            double[][] points  = matrix.Submatrix(null, 0, 1).ToJagged();
            double[]   weights = matrix.GetColumn(2);

            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            gmm.Initializations = 1;
            gmm.ParallelOptions.MaxDegreeOfParallelism = 1;

            gmm.Compute(points, new GaussianMixtureModelOptions()
            {
                Weights = weights
            });

            int    a   = 0;
            int    b   = 1;
            double tol = 1e-3;

            if ((-0.407859903454185).IsRelativelyEqual(gmm.Gaussians[1].Mean[0], tol))
            {
                a = 1;
                b = 0;
            }

            Assert.AreEqual(-0.407859903454185, gmm.Gaussians[a].Mean[0], tol);
            Assert.AreEqual(-0.053911705279706859, gmm.Gaussians[a].Mean[1], tol);

            Assert.AreEqual(0.39380877640250328, gmm.Gaussians[b].Mean[0], tol);
            Assert.AreEqual(0.047186154880776772, gmm.Gaussians[b].Mean[1], tol);

            Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion, 1e-15);

            Assert.IsFalse(gmm.Gaussians[0].Mean.HasNaN());
            Assert.IsFalse(gmm.Gaussians[1].Mean.HasNaN());
        }
        public void GaussianMixtureModelExample()
        {
            // Test Samples
            double[][] samples =
            {
                new double[] { 0, 1 },
                new double[] { 1, 2 },
                new double[] { 1, 1 },
                new double[] { 0, 7 },
                new double[] { 1, 1 },
                new double[] { 6, 2 },
                new double[] { 6, 5 },
                new double[] { 5, 1 },
                new double[] { 7, 1 },
                new double[] { 5, 1 }
            };

            double[] sample = samples[0];


            // Create a new Gaussian mixture with 2 components
            var gmm = new GaussianMixtureModel(components: 2);

            // Compute the model (estimate)
            double error = gmm.Compute(samples);

            // Classify a single sample
            int c0 = gmm.Gaussians.Nearest(samples[0]);
            int c1 = gmm.Gaussians.Nearest(samples[1]);

            int c7 = gmm.Gaussians.Nearest(samples[7]);
            int c8 = gmm.Gaussians.Nearest(samples[8]);

            Assert.AreEqual(c0, c1);
            Assert.AreEqual(c7, c8);
            Assert.AreNotEqual(c0, c8);


            // Extract the multivariate Normal distribution from it
            MultivariateMixture <MultivariateNormalDistribution> mixture =
                gmm.ToMixtureDistribution();

            Assert.AreEqual(2, mixture.Dimension);
            Assert.AreEqual(2, mixture.Components.Length);
            Assert.AreEqual(2, mixture.Coefficients.Length);
        }
Exemplo n.º 13
0
        private void btnCompute_Click(object sender, EventArgs e)
        {
            // Create a new Gaussian Mixture Model
            GaussianMixtureModel gmm = new GaussianMixtureModel(k);

            // If available, initialize with k-means
            if (kmeans != null)
            {
                gmm.Initialize(kmeans);
            }

            // Compute the model
            gmm.Compute(mixture);

            // Classify all instances in mixture data
            int[] classifications = gmm.Classify(mixture);

            // Draw the classifications
            updateGraph(classifications);
        }
Exemplo n.º 14
0
        private void DoFitGMM()
        {
            // Create a new Gaussian Mixture Model
            var gmm = new GaussianMixtureModel(this.k);

            // If available, initialize with k-means
            if (this.kmeans != null)
            {
                gmm.Initialize(this.kmeans);
            }

            // Compute the model
            gmm.Compute(this.mixture);

            // Classify all instances in mixture data
            var classifications = gmm.Gaussians.Nearest(this.mixture);

            // Draw the classifications
            this.UpdateGraph(classifications);
        }
Exemplo n.º 15
0
        public void buildModel()
        {
            if (inputMatrix == null)
            {
                getMatrix();
            }
            switch (cType)
            {
            case clusterType.KMEANS:
                KMeans kmeans = new KMeans(k);
                kmeans.Compute(inputMatrix, precision);
                clusterCollection = kmeans.Clusters;
                model             = kmeans;
                break;

            case clusterType.BINARY:
                BinarySplit bSplit = new BinarySplit(k);
                bSplit.Compute(inputMatrix, precision);
                clusterCollection = bSplit.Clusters;
                model             = bSplit;
                //Console.WriteLine("BinarySplit");
                break;

            case clusterType.GAUSSIANMIXTURE:
                GaussianMixtureModel gModel = new GaussianMixtureModel(k);
                gModel.Compute(inputMatrix, precision);
                clusterCollection = gModel.Gaussians;
                model             = gModel;
                break;

            default:
                break;
            }

            lbl = new List <string>();
            for (int i = 0; i < k; i++)
            {
                lbl.Add(i.ToString());
            }
        }
Exemplo n.º 16
0
        public void GaussianMixtureModelTest3()
        {
            Accord.Math.Tools.SetupGenerator(0);

            var gmm = new GaussianMixtureModel(3);

            Assert.AreEqual(3, gmm.Gaussians.Count);
            Assert.IsNull(gmm.Gaussians[0].Covariance);
            Assert.IsNull(gmm.Gaussians[0].Mean);


            double[][] B = Matrix.Random(56, 12).ToJagged();

            Accord.Math.Tools.SetupGenerator(0);

            gmm.Options.Robust = true;
            var result = gmm.Compute(B, new GaussianMixtureModelOptions()
            {
                NormalOptions = new NormalOptions
                {
                    Robust = true
                }
            });
        }
        public void GaussianMixtureModelTest4()
        {

            // Suppose we have a weighted data set. Those are the input points:
            double[][] points =
            {
                new double[] { 0 }, new double[] { 3 }, new double[] {  1 }, 
                new double[] { 7 }, new double[] { 3 }, new double[] {  5 },
                new double[] { 1 }, new double[] { 2 }, new double[] { -1 },
                new double[] { 2 }, new double[] { 7 }, new double[] {  6 }, 
                new double[] { 8 }, new double[] { 6 } // (14 points)
            };

            // And those are their respective unnormalized weights:
            double[] weights = { 10, 1, 1, 2, 2, 1, 1, 1, 8, 1, 2, 5, 1, 1 }; // (14 weights)

            // with weights
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);
                gmm.Initializations = 1;

                var options = new GaussianMixtureModelOptions();
                options.Weights = weights;
                options.ParallelOptions.MaxDegreeOfParallelism = 1;
                gmm.Compute(points, options);


                int a = 1;
                int b = 0;
                double tol = 1e-6;

                if (!gmm.Gaussians[a].Mean[0].IsRelativelyEqual(6.41922, 1e-4))
                {
                    var t = a;
                    a = b;
                    b = t;
                }

                Assert.AreEqual(6.4192285647145395, gmm.Gaussians[a].Mean[0], tol);
                Assert.AreEqual(0.2888226129013588, gmm.Gaussians[b].Mean[0], tol);

                Assert.AreEqual(0.32321638614859777, gmm.Gaussians[a].Proportion, tol);
                Assert.AreEqual(0.67678361385140218, gmm.Gaussians[b].Proportion, tol);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion);
            }

            // with weights, new style
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);
                gmm.Initializations = 1;

                gmm.UseLogarithm = false;
                gmm.ParallelOptions.MaxDegreeOfParallelism = 1;
                gmm.Learn(points, weights);


                int a = 1;
                int b = 0;
                double tol = 1e-6;

                if (!gmm.Gaussians[a].Mean[0].IsRelativelyEqual(6.41922, 1e-4))
                {
                    var t = a;
                    a = b;
                    b = t;
                }

                Assert.AreEqual(6.4192285647145395, gmm.Gaussians[a].Mean[0], tol);
                Assert.AreEqual(0.2888226129013588, gmm.Gaussians[b].Mean[0], tol);

                Assert.AreEqual(0.32321638614859777, gmm.Gaussians[a].Proportion, tol);
                Assert.AreEqual(0.67678361385140218, gmm.Gaussians[b].Proportion, tol);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion);
            }

            // without weights
            {
                Accord.Math.Random.Generator.Seed = 0;

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);
                gmm.Initializations = 1;

                var options = new GaussianMixtureModelOptions();
                options.ParallelOptions.MaxDegreeOfParallelism = 1;
                gmm.Compute(points, options);

                int a = 1;
                int b = 0;

                double tol = 1e-2;

                if (!6.5149525060859848.IsRelativelyEqual(gmm.Gaussians[a].Mean[0], tol))
                {
                    var t = a;
                    a = b;
                    b = t;
                }

                Assert.AreEqual(6.5149525060859848, gmm.Gaussians[a].Mean[0], tol);
                Assert.AreEqual(1.4191977895308987, gmm.Gaussians[b].Mean[0], tol);

                Assert.AreEqual(0.4195042394315267, gmm.Gaussians[a].Proportion, tol);
                Assert.AreEqual(0.58049576056847307, gmm.Gaussians[b].Proportion, tol);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion, 1e-8);
            }
        }
        public void GaussianMixtureModelTest7()
        {
            double[][] values =
            {
                new double[] {0},
                new double[] {1},
                new double[] {2},
                new double[] {3},
                new double[] {4},
                new double[] {5},
                new double[] {6},
                new double[] {7},
                new double[] {8},
                new double[] {9},
                new double[] {10},
                new double[] {11},
                new double[] {12}
            };

            double[] weights =
            {
                1, 3, 5, 4, 3, 5, 10, 17, 12, 6, 3, 1, 0
            };

            GaussianMixtureModel gmm = new GaussianMixtureModel(2);
            gmm.Compute(values, new GaussianMixtureModelOptions()
            {
                Weights = weights
            });

            int[] classifications = gmm.Gaussians.Nearest(values);
        }
        public void GaussianMixtureModelTest3()
        {
            Accord.Math.Tools.SetupGenerator(0);

            var gmm = new GaussianMixtureModel(3);
            Assert.AreEqual(3, gmm.Gaussians.Count);
            Assert.IsNull(gmm.Gaussians[0].Covariance);
            Assert.IsNull(gmm.Gaussians[0].Mean);


            double[][] B = Matrix.Random(56, 12).ToJagged();

            Accord.Math.Tools.SetupGenerator(0);

            gmm.Options.Robust = true;
            var result = gmm.Compute(B, new GaussianMixtureModelOptions()
                {
                    NormalOptions = new NormalOptions
                    {
                        Robust = true
                    }
                });
        }
        public void GaussianMixtureModelExample()
        {
            // Test Samples
            double[][] samples =
            {
                new double[] { 0, 1 },
                new double[] { 1, 2 }, 
                new double[] { 1, 1 },
                new double[] { 0, 7 },
                new double[] { 1, 1 },
                new double[] { 6, 2 },
                new double[] { 6, 5 },
                new double[] { 5, 1 },
                new double[] { 7, 1 },
                new double[] { 5, 1 }
            };

            double[] sample = samples[0];


            // Create a new Gaussian mixture with 2 components
            var gmm = new GaussianMixtureModel(components: 2);

            // Compute the model (estimate)
            double error = gmm.Compute(samples);

            // Classify a single sample
            int c0 = gmm.Gaussians.Nearest(samples[0]);
            int c1 = gmm.Gaussians.Nearest(samples[1]);

            int c7 = gmm.Gaussians.Nearest(samples[7]);
            int c8 = gmm.Gaussians.Nearest(samples[8]);

            Assert.AreEqual(c0, c1);
            Assert.AreEqual(c7, c8);
            Assert.AreNotEqual(c0, c8);


            // Extract the multivariate Normal distribution from it
            MultivariateMixture<MultivariateNormalDistribution> mixture =
                gmm.ToMixtureDistribution();

            Assert.AreEqual(2, mixture.Dimension);
            Assert.AreEqual(2, mixture.Components.Length);
            Assert.AreEqual(2, mixture.Coefficients.Length);
        }
        public CalPAC(UISettings ui, string grouping, int n, List <double> AreaPool)
        {
            try {
                //Stopwatch sw = new Stopwatch();
                //sw.Start();

                Grouping = grouping; N = n;
                AreaPool.Sort();                 // for weight sampling
                //double px2um2=ui.PixelScale*ui.PixelScale/ui.ResizeRatio/ui.ResizeRatio;
                var    CountDis = new List <double[]>();
                double AreaSum  = 0.0d;
                for (int i = 0; i < AreaPool.Count; i++)
                {
                    double[] data = new double[1];
                    data[0] = Math.Log10(AreaPool[i] + 1);                 //data[1] = (double)(mFull[i]/100.0d);
                    CountDis.Add(data);
                    AreaSum += AreaPool[i];
                }

                ///1-Dist fitted with 1-Population
                GaussianMixtureModel gmm1 = new GaussianMixtureModel(1);
                gmm1Fit      = gmm1.Compute(CountDis.ToArray());
                p1Mean       = gmm1.Gaussians[0].Mean[0];
                p1Covariance = gmm1.Gaussians[0].Covariance[0, 0];
                p1Proportion = gmm1.Gaussians[0].Proportion;
                ///1-Dist fitted with 2-Populations / take the larger proportion
                //GaussianMixtureModel gmm1=new GaussianMixtureModel(2);
                //gmm1Fit=gmm1.Compute(countDis.ToArray());
                //int m=(gmm1.Gaussians[0].Proportion>gmm1.Gaussians[1].Proportion) ? 0 : 1;
                //p1Mean=gmm1.Gaussians[m].Mean[0];
                //p1Covariance=gmm1.Gaussians[m].Covariance[0, 0];
                //p1Proportion=gmm1.Gaussians[m].Proportion;

                ///List<double[]> areaDis = WeightExpansion(AreaPool, divider=10.0d);
                //var AreaDis = new List<double[]>();
                //double divider = 10.0d;
                //for (int i = 0; i<AreaPool.Count; i++) {
                //	double[] data = new double[1];
                //	data[0]=Math.Log10(AreaPool[i]+1);
                //	for (int r = 0; r<Math.Round(AreaPool[i]/divider); r++) { AreaDis.Add(data); }
                //}

                ///List<double[]> areaDis = WeightSampling(AreaPool, AreaSum, Math.Max((int)Math.Round(AreaSum/5000.0d), 1)); // sample every divided by 5000 evenly or every one if not too large
                var AreaDis = new List <double[]>();
                int askip   = (int)Math.Round(Math.Max(AreaSum / 5000.0d, 1));
                for (int sn = 0; sn < (int)Math.Floor(AreaSum); sn += askip)               // sample number
                {
                    double s = 0.0d;
                    for (int bi = 0; bi < AreaPool.Count; bi++)
                    {
                        s += AreaPool[bi];
                        if (s > sn)
                        {
                            double[] data = new double[1];
                            data[0] = Math.Log10(AreaPool[bi] + 1);
                            AreaDis.Add(data); break;
                        }
                    }
                }

                ///2-Dist fitted with 2-Populations /
                GaussianMixtureModel gmm2 = new GaussianMixtureModel(2);
                gmm2Fit = gmm2.Compute(AreaDis.ToArray());
                int a = (gmm2.Gaussians[0].Mean[0] < gmm2.Gaussians[1].Mean[0]) ? 0 : 1;
                p2Mean       = gmm2.Gaussians[a].Mean[0];
                p2Covariance = gmm2.Gaussians[a].Covariance[0, 0];
                p2Proportion = gmm2.Gaussians[a].Proportion;
                p3Mean       = gmm2.Gaussians[1 - a].Mean[0];
                p3Covariance = gmm2.Gaussians[1 - a].Covariance[0, 0];
                p3Proportion = gmm2.Gaussians[1 - a].Proportion;

                DistCount = Bucketize(CountDis);
                DistArea  = Bucketize(AreaDis);

                //sw.Stop();
                //Debug.Write(sw.Elapsed);
            } catch { throw new Exception("Error Occured During Airspace Categorization"); }
        }
Exemplo n.º 22
0
        public void GaussianMixtureModelTest5()
        {
            Accord.Math.Tools.SetupGenerator(0);

            MemoryStream stream = new MemoryStream(Resources.CircleWithWeights);
            ExcelReader reader = new ExcelReader(stream, xlsx: false);

            DataTable table = reader.GetWorksheet("Sheet1");

            double[,] matrix = table.ToMatrix();

            double[][] points = matrix.Submatrix(null, 0, 1).ToArray();
            double[] weights = matrix.GetColumn(2);

            GaussianMixtureModel gmm = new GaussianMixtureModel(2);

            gmm.Compute(points, new GaussianMixtureModelOptions()
            {
                Weights = weights
            });

            int a = 0;
            int b = 1;

            if ((-0.010550720353814949).IsRelativelyEqual(gmm.Gaussians[1].Mean[0], 1e-4))
            {
                a = 1;
                b = 0;
            }

            Assert.AreEqual(-0.010550720353814949, gmm.Gaussians[a].Mean[0], 1e-4);
            Assert.AreEqual(0.40799698773355553, gmm.Gaussians[a].Mean[1], 1e-3);

            Assert.AreEqual(0.011896812071918696, gmm.Gaussians[b].Mean[0], 1e-4);
            Assert.AreEqual(-0.40400708592859663, gmm.Gaussians[b].Mean[1], 1e-4);

            Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion, 1e-15);

            Assert.IsFalse(gmm.Gaussians[0].Mean.HasNaN());
            Assert.IsFalse(gmm.Gaussians[1].Mean.HasNaN());
        }
Exemplo n.º 23
0
        /// <summary>
        ///   Estimates Gaussian distributions from the data.
        /// </summary>
        /// 
        private void btnCompute_Click(object sender, EventArgs e)
        {
            // Create a new Gaussian Mixture Model
            GaussianMixtureModel gmm = new GaussianMixtureModel(k);

            // If available, initialize with k-means
            if (kmeans != null) gmm.Initialize(kmeans);

            // Compute the model
            gmm.Compute(mixture);

            // Classify all instances in mixture data
            int[] classifications = gmm.Gaussians.Nearest(mixture);

            // Draw the classifications
            updateGraph(classifications);
        }
Exemplo n.º 24
0
        internal void Train()
        {
            logLike = new double[maxK]; // Log-likelihood estimate for a given model and training set
            rissanen = new double[maxK]; // Rissanen estimate for a given model and training set
            mdl = new double[maxK]; // Minimum description length for a given model and training set
            kVar = new bool[maxK];
            for (int i = 0; i < maxK; ++i)
            {
                // Step 1: Make a GMM with K subclasses
                gmm = new GaussianMixtureModel(kVals[i]);

                // Step 2: fit the gmm to the projection data
                logLike[i] = gmm.Compute(currentProjection, 1e-3, 1.0);

                // Step 3: perform a classification to detect spurious classification
                kVar[i] = (kVals[i] == gmm.Classify(currentProjection).Distinct().ToArray().Length);

                // Step 4: Calculate the MDL for this K
                double L = (double)(kVals[i] * 3 - 1);
                rissanen[i] = 0.5 * L * Math.Log(currentProjection.Length);
                mdl[i] = -logLike[i] + rissanen[i];
            }

            // Which value of K supported the MDL:
            int ind = Array.IndexOf(mdl, mdl.Min());

            // Find the value of K that supports the lowest mdl and is verified
            K = kVals[ind];
            while (!kVar[ind])
            {
                K = kVals[ind];
                ++ind;
            }

            // Recreate the gmm with the trained value of K
            gmm = new GaussianMixtureModel(K);
            double LL = gmm.Compute(currentProjection, 1e-3, 1.0);

            // Is this a functional classifier?
            if (gmm != null)
                trained = true;

            // Set the STD ellipsoid
            gmm.SetPValue(pValue);
        }
Exemplo n.º 25
0
        public void GenerateGMM()
        {
            double[][] mixture = new double[DeltaScores.Count][];
            for (int i = 0; i < DeltaScores.Count; i++)
            {
                mixture[i] = new double[] { DeltaScores[i] };
            }

            gmm = new GaussianMixtureModel(2);

            // If available, initialize with k-means
            //if (kmeans != null) gmm.Initialize(kmeans);

            // Compute the model
            GaussianMixtureModelOptions gmmo = new GaussianMixtureModelOptions();

            gmmo.Logarithm = true;
            gmm.Compute(mixture, 0.000000000000000000000001);



            //Find out who is the big median gaussian and small media gaussian
            double[] meanTmp1 = gmm.Gaussians[0].Mean;
            double[] meanTmp2 = gmm.Gaussians[1].Mean;

            ProportionSmallGaussian = -1;
            ProportionBigGaussian   = -1;

            if (meanTmp1[0] < meanTmp2[0])
            {
                GaussianSmallMean       = gmm.Gaussians[0].ToDistribution();
                ProportionSmallGaussian = gmm.Gaussians[0].Proportion;

                GaussianBigMean       = gmm.Gaussians[1].ToDistribution();
                ProportionBigGaussian = gmm.Gaussians[1].Proportion;
            }
            else
            {
                GaussianSmallMean       = gmm.Gaussians[1].ToDistribution();
                ProportionSmallGaussian = gmm.Gaussians[1].Proportion;

                GaussianBigMean       = gmm.Gaussians[0].ToDistribution();
                ProportionBigGaussian = gmm.Gaussians[0].Proportion;
            }


            //And now find GMM intersect and the cumulative intersect
            double min = DeltaScores.Min();
            double max = DeltaScores.Max();


            List <double> smallMeanValues = new List <double>();
            List <double> largeMeanValues = new List <double>();

            //Determine intersect of the two Gaussians
            double GMintersect = double.PositiveInfinity;
            double GMdistance2 = double.PositiveInfinity;

            double Cintersect = double.PositiveInfinity;
            double Cdistance2 = double.PositiveInfinity;

            for (double i = GaussianSmallMean.Median[0]; i <= GaussianBigMean.Median[0]; i += 0.02)
            {
                //Gaussian Intersect
                //double GMredG = GaussianSmallMean.ProbabilityDensityFunction(i) * ProportionSmallGaussian;
                //double GMblueG = GaussianBigMean.ProbabilityDensityFunction(i) * ProportionBigGaussian;

                double GMredG  = GaussianSmallMean.ProbabilityDensityFunction(i);
                double GMblueG = GaussianBigMean.ProbabilityDensityFunction(i);

                double GMdistanceThis = Math.Abs(GMredG - GMblueG);

                if (GMdistanceThis < Math.Abs(GMdistance2))
                {
                    GMdistance2 = GMdistanceThis;
                    GMintersect = i;
                }

                //Cumulative Intersect
                //double CredG = GaussianSmallMean.ComplementaryDistributionFunction(i) * ProportionSmallGaussian;
                //double CblueG = GaussianBigMean.DistributionFunction(i) * ProportionBigGaussian;

                double CredG  = GaussianSmallMean.ComplementaryDistributionFunction(i);
                double CblueG = GaussianBigMean.DistributionFunction(i);

                double CdistanceThis = Math.Abs(CredG - CblueG);

                if (CdistanceThis < Math.Abs(Cdistance2))
                {
                    Cdistance2 = CdistanceThis;
                    Cintersect = i;
                }
            }

            Console.WriteLine("Gaussian Meeting point : " + GMintersect);
            Console.WriteLine("Cumulative Meeting point : " + Cintersect);

            GaussianIntersect   = GMintersect;
            CumulativeIntersect = Cintersect;
        }
Exemplo n.º 26
0
        // Method to rate mode goodness and then sort (use first mode as base)
        private void ComputeModeGoodnessRatio()
        {
            // Use no more than Max_N (which is 5 I believe)
            int n = lstCentroids.Count;     // find as many Gaussians as modes.
            // Don't do too many Gaussians because it will take a long time and perform poorly
            if (n > GCount)
            {
                n = GCount;
            }

            // Multiple dist map and diff map if necessary
            //DateTime startTime = DateTime.Now;
            ComputeRealMap();
            //DateTime stopTime = DateTime.Now;
            //TimeSpan duration = stopTime - startTime;
            //double RunTime = duration.TotalSeconds;
            //System.Windows.Forms.MessageBox.Show("ComputeRealMap Run time " + RunTime + " seconds!");

            // Allocate memory for output matrices
            Array arrModes = new double[n];
            Array arrProportions = new double[n];
            Array arrMUs = new double[n, 2];
            Array arrSigmaXSigmaY = new double[n];
            Array junkModes = new double[n];
            Array junkMUs = new double[n, 2];
            Array junkSigmaXSigmaY = new double[n];

            #region Using MATLAB for GMM

            ////startTime = DateTime.Now;
            //double[,] arrSamplesR;
            //double[,] arrSamplesI;

            //// Generate samples from map to get ready to perform mixed Gaussian fitting
            //PrepareSamples(out arrSamplesR, out arrSamplesI);
            ////stopTime = DateTime.Now;
            ////duration = stopTime - startTime;
            ////RunTime = duration.TotalSeconds;
            ////System.Windows.Forms.MessageBox.Show("PrepareSamples Run time " + RunTime + " seconds!");

            //// Perform mixed Gaussian fitting and get parameters
            ////startTime = DateTime.Now;
            //// Using MATLAB to do GMM
            //GaussianFitting(n, arrSamplesR, arrSamplesI, ref arrModes, ref arrMUs, ref arrSigmaXSigmaY, ref junkModes, ref junkMUs, ref junkSigmaXSigmaY);
            ////stopTime = DateTime.Now;
            ////duration = stopTime - startTime;
            ////RunTime = duration.TotalSeconds;
            ////System.Windows.Forms.MessageBox.Show("GaussianFitting Run time " + RunTime + " seconds!");
            //// Debug
            //// curRequest.SetLog("\nMATLAB GMM results\n");

            #endregion

            #region Using C# for GMM

            // Prepare samples into the format needed
            double[][] arrSamples;

            // Generate samples from map to get ready to perform mixed Gaussian fitting
            PrepareSamplesAccord(out arrSamples);

            // Using Accord.net library to do GMM
            GaussianMixtureModel gmm = new GaussianMixtureModel(n);
            List<MapMode> lstGaussians = new List<MapMode>();           // Results stored in a list of MapModes for sorting

            // If Accord.net library fails, try it again up to 3 times
            for (int ii = 0; ii < ProjectConstants.MaxAccordRun; ii++)
            {
                try
                {
                    gmm.Compute(arrSamples, 10);

                    //// Debug code
                    //// Print out means and covariances and proportions so we can plot
                    //Console.WriteLine("Accord.net run number " + ii);
                    //for (int i = 0; i < n; i++)
                    //{
                    //    Console.WriteLine("Gaussian number " + i);
                    //    // Means
                    //    Console.Write("Mean: (" + gmm.Gaussians[i].Mean[0] + " " + gmm.Gaussians[i].Mean[1] + ") ");
                    //    // Area
                    //    Console.Write("Covariance Matrix [" + gmm.Gaussians[i].Covariance[0, 0] + " "
                    //        + gmm.Gaussians[i].Covariance[0, 1] + "; "
                    //        + gmm.Gaussians[i].Covariance[1, 0] + " "
                    //        + gmm.Gaussians[i].Covariance[1, 1] + "] ");
                    //    Console.Write("Proportion: " + gmm.Gaussians[i].Proportion + "\n");
                    //}

                    // Getting arrays ready
                    for (int i = 0; i < n; i++)
                    {
                        // Means
                        arrMUs.SetValue(gmm.Gaussians[i].Mean[0], i, 0);
                        arrMUs.SetValue(gmm.Gaussians[i].Mean[1], i, 1);
                        // Area
                        DenseMatrix m = new DenseMatrix(gmm.Gaussians[i].Covariance);
                        System.Numerics.Complex[] d = m.Evd().EigenValues().ToArray();
                        double SigmaXSigmaY = Math.Sqrt(d[0].Real) * Math.Sqrt(d[1].Real);
                        arrSigmaXSigmaY.SetValue(SigmaXSigmaY, i);
                        // Modes
                        arrModes.SetValue(gmm.Gaussians[i].GetDistribution().ProbabilityDensityFunction(gmm.Gaussians[i].Mean), i);
                        // Scales
                        arrProportions.SetValue(gmm.Gaussians[i].Proportion, i);
                    }
                    // Debug
                    // curRequest.SetLog("\nAccord GMM results\n");

                    ////Debug code
                    //for (int i = 0; i < arrMUs.Length / 2; i++)
                    //{
                    //    curRequest.SetLog(arrMUs.GetValue(i, 0) + "," + arrMUs.GetValue(i, 1) + "  ");
                    //}
                    //curRequest.SetLog("\n");
                    //for (int i = 0; i < arrSigmaXSigmaY.Length; i++)
                    //{
                    //    curRequest.SetLog(arrSigmaXSigmaY.GetValue(i) + "  ");
                    //}
                    //curRequest.SetLog("\n");
                    //for (int i=0; i< arrModes.Length; i++)
                    //{
                    //    curRequest.SetLog(arrModes.GetValue(i) + " ");
                    //}
                    //curRequest.SetLog("\n");

                    //startTime = DateTime.Now;
                    // Match centroids to Gaussians
                    MatchCentroidsToGaussians(arrMUs, lstGaussians);
                    //stopTime = DateTime.Now;
                    //duration = stopTime - startTime;
                    //RunTime = duration.TotalSeconds;
                    //System.Windows.Forms.MessageBox.Show("MatchCentroidsToGaussians Run time " + RunTime + " seconds!");
                    ii = ProjectConstants.MaxAccordRun;
                }
                catch
                {
                    Console.WriteLine("Something went wrong with Accord.net library.");
                    // System.Windows.Forms.MessageBox.Show("Something went wrong with Accord.net library.");
                }
            }

            #endregion

            //startTime = DateTime.Now;
            // Evaluate Goodness Rating
            EvaluateGoodnessRatings(arrModes, arrSigmaXSigmaY, lstGaussians, arrProportions);
            //stopTime = DateTime.Now;
            //duration = stopTime - startTime;
            //RunTime = duration.TotalSeconds;
            //System.Windows.Forms.MessageBox.Show("EvaluateGoodnessRatings Run time " + RunTime + " seconds!");

            //// Debug code
            //// Print out all Gaussians found
            //Console.WriteLine("Goodness Ratio:");
            //for (int ii = 0; ii < lstGaussians.Count; ii++)
            //{
            //    Console.Write("Gaussian number " + ii + ": " + lstGaussians[ii].GoodnessRating + ", ");
            //}
            //Console.Write("\n");

            // Find top N modes
            lstGaussians.Sort();
            lstGaussians.Reverse();
            ////Debug
            //for (int i = 0; i < n; i++)
            //{
            //    curRequest.SetLog("Mode (x,y): " + lstGaussians[i].Mode.X + "," + lstGaussians[i].Mode.Y + " MGR:" + lstGaussians[i].GoodnessRating + "\n");
            //}
            lstGaussians.RemoveRange(N, lstGaussians.Count - N);

            // Rebuild lstCentroids
            lstCentroids.Clear();
            foreach (MapMode mm in lstGaussians)
            {
                lstCentroids.Add(mm.Mode);
            }
        }
        public void buildModel()
        {
            if (inputMatrix == null) getMatrix();
            switch (cType)
            {
                case clusterType.KMEANS:
                    KMeans kmeans = new KMeans(k);
                    kmeans.Compute(inputMatrix, precision);
                    clusterCollection = kmeans.Clusters;
                    model = kmeans;
                    break;
                case clusterType.BINARY:
                    BinarySplit bSplit = new BinarySplit(k);
                    bSplit.Compute(inputMatrix, precision);
                    clusterCollection = bSplit.Clusters;
                    model = bSplit;
                    //Console.WriteLine("BinarySplit");
                    break;
                case clusterType.GAUSSIANMIXTURE:
                    GaussianMixtureModel gModel = new GaussianMixtureModel(k);
                    gModel.Compute(inputMatrix, precision);
                    clusterCollection = gModel.Gaussians;
                    model = gModel;
                    break;
                default:
                    break;
            }

            lbl = new List<string>();
            for (int i = 0; i < k; i++)
            {
                lbl.Add(i.ToString());
            }
        }
        public void GaussianMixtureModelTest5()
        {
            Accord.Math.Tools.SetupGenerator(0);

            MemoryStream stream = new MemoryStream(Resources.CircleWithWeights);
            ExcelReader reader = new ExcelReader(stream, xlsx: false);

            DataTable table = reader.GetWorksheet("Sheet1");

            double[,] matrix = table.ToMatrix();

            double[][] points = matrix.Submatrix(null, 0, 1).ToJagged();
            double[] weights = matrix.GetColumn(2);

            GaussianMixtureModel gmm = new GaussianMixtureModel(2);
            gmm.Initializations = 1;

            gmm.Compute(points, new GaussianMixtureModelOptions()
            {
                Weights = weights
            });

            int a = 0;
            int b = 1;
            double tol = 1e-3;

            if ((-0.407859903454185).IsRelativelyEqual(gmm.Gaussians[1].Mean[0], tol))
            {
                a = 1;
                b = 0;
            }

            Assert.AreEqual(-0.407859903454185, gmm.Gaussians[a].Mean[0], tol);
            Assert.AreEqual(-0.053911705279706859, gmm.Gaussians[a].Mean[1], tol);

            Assert.AreEqual(0.39380877640250328, gmm.Gaussians[b].Mean[0], tol);
            Assert.AreEqual(0.047186154880776772, gmm.Gaussians[b].Mean[1], tol);

            Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion, 1e-15);

            Assert.IsFalse(gmm.Gaussians[0].Mean.HasNaN());
            Assert.IsFalse(gmm.Gaussians[1].Mean.HasNaN());
        }
Exemplo n.º 29
0
        public void GaussianMixtureModelTest4()
        {

            // Suppose we have a weighted data set. Those are the input points:
            double[][] points =
            {
                new double[] { 0 }, new double[] { 3 }, new double[] {  1 }, 
                new double[] { 7 }, new double[] { 3 }, new double[] {  5 },
                new double[] { 1 }, new double[] { 2 }, new double[] { -1 },
                new double[] { 2 }, new double[] { 7 }, new double[] {  6 }, 
                new double[] { 8 }, new double[] { 6 } // (14 points)
            };

            // And those are their respective unnormalized weights:
            double[] weights = { 10, 1, 1, 2, 2, 1, 1, 1, 8, 1, 2, 5, 1, 1 }; // (14 weights)

            // with weights
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);

                gmm.Compute(points, new GaussianMixtureModelOptions()
                {
                    Weights = weights
                });


                int a = 0;
                int b = 1;

                if (gmm.Gaussians[1].Mean[0].IsRelativelyEqual(6.420790676635443, 1e-10))
                {
                    a = 1;
                    b = 0;
                }

                Assert.AreEqual(6.420790676635443, gmm.Gaussians[a].Mean[0], 1e-10);
                Assert.AreEqual(0.290536871335858, gmm.Gaussians[b].Mean[0], 1e-10);

                Assert.AreEqual(0.32294476897888613, gmm.Gaussians[a].Proportion, 1e-6);
                Assert.AreEqual(0.67705523102111387, gmm.Gaussians[b].Proportion, 1e-6);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion);
            }

            // without weights
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);

                gmm.Compute(points);

                int a = 0;
                int b = 1;

                if (6.5149525060859865.IsRelativelyEqual(gmm.Gaussians[1].Mean[0], 1e-10))
                {
                    a = 1;
                    b = 0;
                }

                Assert.AreEqual(6.5149525060859865, gmm.Gaussians[a].Mean[0], 1e-10);
                Assert.AreEqual(1.4191977895308987, gmm.Gaussians[b].Mean[0], 1e-6);

                Assert.AreEqual(0.42235760973845654, gmm.Gaussians[a].Proportion, 1e-6);
                Assert.AreEqual(0.57764239026154351, gmm.Gaussians[b].Proportion, 1e-6);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion);
            }
        }
        public void LargeSampleTest()
        {
            Accord.Math.Tools.SetupGenerator(0);

            Func<double> r = () => Tools.Random.NextDouble();
            Func<double> b = () => Tools.Random.NextDouble() > 0.3 ? 1 : -1;

            // Test Samples
            int thousand = 1000;
            int million = thousand * thousand;
            double[][] samples = new double[5 * million][];

            Func<int, double[]> expand = (int label) =>
                {
                    var d = new double[10];
                    d[label] = 1;
                    return d;
                };

            for (int j = 0; j < samples.Length; j++)
            {
                if (j % 10 > 8)
                    samples[j] = new double[] { r() }.Concatenate(expand(Tools.Random.Next() % 10));
                else samples[j] = new double[] { r() * j }.Concatenate(expand(j % 10));
            }


            // Create a new Gaussian Mixture Model with 2 components
            GaussianMixtureModel gmm = new GaussianMixtureModel(5);

            // Compute the model
            double result = gmm.Compute(samples, new GaussianMixtureModelOptions()
            {
                NormalOptions = new NormalOptions()
                {
                    Regularization = 1e-5,
                }
            });


            for (int i = 0; i < samples.Length; i++)
            {
                var sample = samples[i];
                int c = gmm.Gaussians.Nearest(sample);

                Assert.AreEqual(c, (i % 10) >= 5 ? 1 : 0);
            }
        }
Exemplo n.º 31
0
        public void GaussianMixtureModelTest4()
        {
            // Suppose we have a weighted data set. Those are the input points:
            double[][] points =
            {
                new double[] { 0 }, new double[] { 3 }, new double[] {  1 },
                new double[] { 7 }, new double[] { 3 }, new double[] {  5 },
                new double[] { 1 }, new double[] { 2 }, new double[] { -1 },
                new double[] { 2 }, new double[] { 7 }, new double[] {  6 },
                new double[] { 8 }, new double[] { 6 } // (14 points)
            };

            // And those are their respective unnormalized weights:
            double[] weights = { 10, 1, 1, 2, 2, 1, 1, 1, 8, 1, 2, 5, 1, 1 }; // (14 weights)

            // with weights
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);
                gmm.Initializations = 1;

                var options = new GaussianMixtureModelOptions();
                options.Weights = weights;
                options.ParallelOptions.MaxDegreeOfParallelism = 1;
                gmm.Compute(points, options);


                int    a   = 1;
                int    b   = 0;
                double tol = 1e-6;

                if (!gmm.Gaussians[a].Mean[0].IsRelativelyEqual(6.41922, 1e-4))
                {
                    var t = a;
                    a = b;
                    b = t;
                }

                Assert.AreEqual(6.4192285647145395, gmm.Gaussians[a].Mean[0], tol);
                Assert.AreEqual(0.2888226129013588, gmm.Gaussians[b].Mean[0], tol);

                Assert.AreEqual(0.32321638614859777, gmm.Gaussians[a].Proportion, tol);
                Assert.AreEqual(0.67678361385140218, gmm.Gaussians[b].Proportion, tol);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion);
            }

            // with weights, new style
            {
                Accord.Math.Tools.SetupGenerator(0);

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);
                gmm.Initializations = 1;

                gmm.UseLogarithm = false;
                gmm.ParallelOptions.MaxDegreeOfParallelism = 1;
                gmm.Learn(points, weights);


                int    a   = 1;
                int    b   = 0;
                double tol = 1e-6;

                if (!gmm.Gaussians[a].Mean[0].IsRelativelyEqual(6.41922, 1e-4))
                {
                    var t = a;
                    a = b;
                    b = t;
                }

                Assert.AreEqual(6.4192285647145395, gmm.Gaussians[a].Mean[0], tol);
                Assert.AreEqual(0.2888226129013588, gmm.Gaussians[b].Mean[0], tol);

                Assert.AreEqual(0.32321638614859777, gmm.Gaussians[a].Proportion, tol);
                Assert.AreEqual(0.67678361385140218, gmm.Gaussians[b].Proportion, tol);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion);
            }

            // without weights
            {
                Accord.Math.Random.Generator.Seed = 0;

                // If we need the GaussianMixtureModel functionality, we can
                // use the estimated mixture to initialize a new model:
                GaussianMixtureModel gmm = new GaussianMixtureModel(2);
                gmm.Initializations = 1;

                var options = new GaussianMixtureModelOptions();
                options.ParallelOptions.MaxDegreeOfParallelism = 1;
                gmm.Compute(points, options);

                int a = 1;
                int b = 0;

                double tol = 1e-2;

                if (!6.5149525060859848.IsRelativelyEqual(gmm.Gaussians[a].Mean[0], tol))
                {
                    var t = a;
                    a = b;
                    b = t;
                }

                Assert.AreEqual(6.5149525060859848, gmm.Gaussians[a].Mean[0], tol);
                Assert.AreEqual(1.4191977895308987, gmm.Gaussians[b].Mean[0], tol);

                Assert.AreEqual(0.4195042394315267, gmm.Gaussians[a].Proportion, tol);
                Assert.AreEqual(0.58049576056847307, gmm.Gaussians[b].Proportion, tol);
                Assert.AreEqual(1, gmm.Gaussians[0].Proportion + gmm.Gaussians[1].Proportion, 1e-8);
            }
        }
        public void GaussianMixtureModelTest2()
        {
            Accord.Math.Random.Generator.Seed = 0;

            int height = 16;
            int width = 16;

            var gmm = new GaussianMixtureModel(3);
            // gmm.Regularization = 0;

            Assert.AreEqual(3, gmm.Gaussians.Count);
            Assert.IsNull(gmm.Gaussians[0].Covariance);
            Assert.IsNull(gmm.Gaussians[0].Mean);


            double[][][] A = new double[3][][];
            A[0] = new double[height][];
            A[1] = new double[height][];
            A[2] = new double[height][];

            for (int j = 0; j < height; j++)
            {
                A[0][j] = new double[width];
                A[1][j] = new double[width];
                A[2][j] = new double[width];

                for (int k = 0; k < width; k++)
                {
                    A[0][j][k] = 102;
                    A[1][j][k] = 57;
                    A[2][j][k] = 200;
                }
            }

            double[][] B = Matrix.Stack(A);

            bool thrown = false;
            try
            {
                var result = gmm.Compute(B);
            }
            catch (NonPositiveDefiniteMatrixException)
            {
                thrown = true;
            }

            Assert.IsTrue(thrown);
        }
Exemplo n.º 33
0
        public void GaussianMixtureModelTest3()
        {
            Accord.Math.Tools.SetupGenerator(0);

            var gmm = new GaussianMixtureModel(3);
            Assert.AreEqual(3, gmm.Gaussians.Count);
            Assert.IsNull(gmm.Gaussians[0].Covariance);
            Assert.IsNull(gmm.Gaussians[0].Mean);


            double[][] B = Matrix.Random(56, 12).ToArray();

            var result = gmm.Compute(B);
        }