Exemplo n.º 1
0
        private void FisherFaceRecognition(object sender, EventArgs e)
        {
            Frame = _capture.QueryFrame().ToImage <Bgr, byte>();
            var frame = Frame.Resize(frameW, frameH, Inter.Cubic);

            grayFrame = frame.Convert <Gray, Byte>();
            var faces = cascadeClassifier.DetectMultiScale(grayFrame, 1.1, 10, Size.Empty);

            foreach (var f in faces)
            {
                fisherFaceRecognizer = new FisherFaceRecognizer(Count, double.PositiveInfinity);
                fisherFaceRecognizer.Train(trainingImages.ToArray(), indexLabels.ToArray());

                var result = fisherFaceRecognizer.Predict(frame.Copy(f).Convert <Gray, Byte>().Resize(100, 100, Inter.Cubic));
                if (result.Label == -1)
                {
                    frame.Draw(f, new Bgr(Color.Red), 2);
                    frame.Draw("Unknown", new Point(f.X, f.Y - 10), font, 0.8, new Bgr(Color.Blue), 2, new LineType(), false);
                }
                else
                {
                    frame.Draw(f, new Bgr(Color.Green), 2);
                    frame.Draw(nameLabels[result.Label], new Point(f.X, f.Y - 10), font, 0.8, new Bgr(Color.Blue), 2, new LineType(), false);
                }
                alertMessage.Text = (alert + "เริ่มการ Face Recognition ด้วยวิธีการ " + RecognitionType.Text + " แล้ว \r\n" + "Distance " + result.Distance + "\r\n Faces " + faces.Length.ToString());
            }


            imgFrame.Image = frame.Resize(imgBoxW, imgBoxH, Inter.Cubic);
        }
Exemplo n.º 2
0
 private bool LoadTrainingData()
 {
     mydb             = new DBConn();
     imagelabel       = mydb.getLabelNumList().ToArray();
     imageStringlabel = mydb.getLabelList().ToArray();
     trainingImages   = mydb.getTrainedImageList();
     Itrainingimage   = trainingImages;
     if (mydb.getImageCount() > 0)
     {
         if (trainingImages.Length != 0)
         {
             f_recognize = new FisherFaceRecognizer(0, 123.0);
             f_recognize.Train(Itrainingimage, imagelabel);
             return(true);
         }
         else
         {
             return(false);
         }
     }
     else
     {
         return(false);
     }
 }
Exemplo n.º 3
0
        private bool CdmFaceTrain(bool minus = false)
        {
            try
            {
                if (minus && trainingImages.Count > 1)
                {
                    trainingImages.RemoveAt(0);
                    Names_List_ID.RemoveAt(0);
                }
                else if (trainingImages.Count < 1)
                {
                    UpdateStatus(string.Format(" {0} ,not trained.", trainingImages.Count));
                    return(true);
                }
                UpdateStatus(string.Format(" {0} photo for trainin.", trainingImages.Count));
                recognizer.Train(trainingImages.ToArray(), Names_List_ID.ToArray());

                UpdateStatus(string.Format("trained trained {0}", trainingImages.Count));
                return(true);
            }
            catch (Exception ex)
            {
                UpdateStatus(string.Format("trained error {0}", ex));
                return(false);
            }
        }
        private static FaceRecognizer CreateRollCallRecognizer(int RollCallID)
        {
            //Tu rollcall ID, tao face recognizer, train
            //FaceRecognizer FaceRec = new LBPHFaceRecognizer(1, 8, 8, 8, 75);
            FaceRecognizer FaceRec = new FisherFaceRecognizer(80, RECOGNIZER_THREEHOLD);

            List <int> StudentIDs = new List <int>();
            List <Image <Gray, byte> > StudentImages = new List <Image <Gray, byte> >();

            RollCallBusiness RollBO = new RollCallBusiness();
            //Load danh sach student cua roll call
            RollCall RollCall = RollBO.GetRollCallByID(RollCallID);

            foreach (var Student in RollCall.Students)
            {
                foreach (var Image in Student.StudentImages)
                {
                    //Load ID va anh de train cho bo recognizer
                    StudentIDs.Add(Image.StudentID);
                    String             TrainingImagePath = TRAINING_FOLDER_PATH + "/" + Image.ImageLink;
                    Image <Gray, byte> TrainingImage     = new Image <Gray, byte>(TrainingImagePath);

                    TrainingImage._EqualizeHist();
                    StudentImages.Add(TrainingImage);
                }
            }

            FaceRec.Train(StudentImages.ToArray(), StudentIDs.ToArray());

            return(FaceRec);
        }
        public void TrainImages()
        {
            string path = Application.StartupPath + @"/../../Images/";

            string[] files = Directory.GetFiles(path, "*.jpg", SearchOption.AllDirectories);
            //   int[] labelsDb = _context.Labels.Select(_ => _.LabelNumber).ToArray();
            List <int> labelsDb = new List <int>();

            Mat[] matImages = new Mat[files.Length];



            for (int i = 0; i < files.Length; i++)
            {
                matImages[i] = new Image <Gray, byte>(files[i]).Mat;
                string[] strings = files[i].Split('-');
                string   number  = strings[strings.Length - 1].Split('.')[0];
                labelsDb.Add(int.Parse(number));
            }


            VectorOfMat images = new VectorOfMat(matImages);
            VectorOfInt labels = new VectorOfInt(labelsDb.ToArray());

            faceRecognizer.Train(images, labels);
            faceRecognizer.Write(Application.StartupPath + @"/../../Images/eigenRecognizer.yml");
            fisherRecognizer.Train(images, labels);
            fisherRecognizer.Write(Application.StartupPath + @"/../../Images/fisherRecognizer.yml");
            LBPHFaceRecognizer.Train(images, labels);
            LBPHFaceRecognizer.Write(Application.StartupPath + @"/../../Images/lpbhRecognizer.yml");
            isTrained = true;
        }
Exemplo n.º 6
0
        /// <summary>
        /// Face recognition based on Fisher classifier using eigen
        /// fisher faces</summary>
        /// <param name="labels">The set of labels in the training set</param>
        /// <param name="trainingImages">The set of images(faces) in the
        /// training set</param>
        /// <param name="face">The face detected in gray scale
        /// to be recognized. The dimension of the image must be
        /// equal to the dimension of the images in the training set</param>
        /// <returns>A string representing the label of the face recognized
        /// or an empty string if no matches were found</returns>
        public String recognizeFisherFace(List <String> labels,
                                          List <Image <Gray, Byte> > trainingImages,
                                          Bitmap face)
        {
            String label = String.Empty;

            InitParams();
            Image <Bgr, Byte>  imageEmgu     = new Image <Bgr, Byte>(face);
            Image <Gray, Byte> extractedFace = imageEmgu.Convert <Gray, Byte>().Copy().Resize(
                100, 100, INTER.CV_INTER_CUBIC);

            extractedFace._EqualizeHist();

            if (trainingImages.ToArray().Length != 0)
            {
                FisherFaceRecognizer recognizer = new FisherFaceRecognizer(0, Treshold);
                int[] labelsInt = new int[labels.ToArray().Length];
                for (int i = 0; i < labels.ToArray().Length; i++)
                {
                    labelsInt[i] = i;
                }
                recognizer.Train(trainingImages.ToArray(), labelsInt.ToArray());
                FisherFaceRecognizer.PredictionResult pr;
                pr = recognizer.Predict(extractedFace);
                if (pr.Label != -1)
                {
                    label                   = labels[pr.Label];
                    MostSimilarFace         = trainingImages[pr.Label];
                    MostSimilarFaceIndex    = pr.Label;
                    MostSimilarFaceDistance = (float)pr.Distance;
                    MostSimilarFaceLabel    = labels[pr.Label];
                }
                else
                {
                    recognizer = new FisherFaceRecognizer(0, 10000);
                    recognizer.Train(trainingImages.ToArray(), labelsInt.ToArray());
                    pr = recognizer.Predict(extractedFace);
                    MostSimilarFace         = trainingImages[pr.Label];
                    MostSimilarFaceIndex    = pr.Label;
                    MostSimilarFaceDistance = (float)pr.Distance;
                    MostSimilarFaceLabel    = labels[pr.Label];
                }
            }
            return(label);
        }
        public bool LoadTrainingData()
        {
            if (File.Exists(LabelsFile))
            {
                try
                {
                    //Clearing Lists In Case of Retrain Operation Occoured.
                    ListOFNames.Clear();
                    ListOfIds.Clear();
                    trainingImages.Clear();

                    //Reading Xml File
                    FileStream filestream = File.OpenRead(LabelsFile);
                    long       filelength = filestream.Length;
                    byte[]     xmlBytes   = new byte[filelength];
                    filestream.Read(xmlBytes, 0, (int)filelength);
                    filestream.Close();

                    MemoryStream xmlStream = new MemoryStream(xmlBytes);
                    using (XmlReader xmlreader = XmlTextReader.Create(xmlStream))
                    {
                        while (xmlreader.Read())
                        {
                            if (xmlreader.IsStartElement())
                            {
                                switch (xmlreader.Name)
                                {
                                case "NAME":
                                    if (xmlreader.Read())
                                    {
                                        ListOfIds.Add(ListOFNames.Count);
                                        ListOFNames.Add(xmlreader.Value.Trim());
                                        NumLabels += 1;
                                    }
                                    break;

                                case "FILE":
                                    if (xmlreader.Read())
                                    {
                                        //PROBLEM HERE IF TRAININGG MOVED
                                        trainingImages.Add(new Image <Gray, byte>(Variables.DataSetFolder + "\\" + xmlreader.Value.Trim()));
                                    }
                                    break;
                                }
                            }
                        }
                    }
                    ContTrain = NumLabels;

                    if (trainingImages.ToArray().Length != 0)
                    {
                        eigen.Train(trainingImages.ToArray(), ListOfIds.ToArray());
                        fisher.Train(trainingImages.ToArray(), ListOfIds.ToArray());
                        Lp.Train(trainingImages.ToArray(), ListOfIds.ToArray());
                        Loaded = true;

                        return(true);
                    }
                    else
                    {
                        return(false);
                    }
                }
                catch (Exception Exp)
                {
                    HasError = true;
                    Debug.WriteLine("Error In Loading Function : " + Exp.Message);
                    return(false);
                }
            }
            else
            {
                return(false);
            }
        }
Exemplo n.º 8
0
        private void button1_Click(object sender, EventArgs e)
        {
            if (comboBoxAlgorithm.Text == "EigenFaces")
            {
                try
                {
                    string dataDirectory = Directory.GetCurrentDirectory() + "\\TrainedFaces";

                    string[] files = Directory.GetFiles(dataDirectory, "*.jpg", SearchOption.AllDirectories);
                    eigenTrainedImageCounter = 0;
                    foreach (var file in files)
                    {
                        Image <Bgr, Byte> TrainedImage = new Image <Bgr, Byte>(file);
                        if (eqHisChecked.Checked == true)
                        {
                            TrainedImage._EqualizeHist();
                        }
                        eigenTrainingImages.Add(TrainedImage.Convert <Gray, Byte>());
                        eigenlabels.Add(fileName(file));
                        eigenIntlabels.Add(eigenTrainedImageCounter);
                        eigenTrainedImageCounter++;
                        richTextBox1.Text += fileName(file) + "\n";
                    }

                    /*
                     *  //TermCriteria for face recognition with numbers of trained images like maxIteration
                     *  MCvTermCriteria termCrit = new MCvTermCriteria(eigenTrainedImageCounter, 0.001);
                     *
                     *  //Eigen face recognizer
                     *  eigenObjRecognizer=new EigenObjectRecognizer(
                     *    eigenTrainingImages.ToArray(),
                     *    eigenlabels.ToArray(),
                     *    3000,
                     *    ref termCrit);
                     */
                    eigenFaceRecognizer = new EigenFaceRecognizer(eigenTrainedImageCounter, 2000);
                    eigenFaceRecognizer.Train(eigenTrainingImages.ToArray(), eigenIntlabels.ToArray());
                    //eigenFaceRecognizer.Save(dataDirectory + "\\trainedDataEigen.dat");
                }
                catch (Exception ex)
                {
                    MessageBox.Show(ex.ToString());
                    MessageBox.Show("Nothing in binary database, please add at least a face(Simply train the prototype with the Add Face Button).", "Triained faces load", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
                }
            }

            else if (comboBoxAlgorithm.Text == "FisherFaces")
            {
                try
                {
                    string dataDirectory = Directory.GetCurrentDirectory() + "\\TrainedFaces";

                    string[] files = Directory.GetFiles(dataDirectory, "*.jpg", SearchOption.AllDirectories);
                    fisherTrainedImageCounter = 0;
                    foreach (var file in files)
                    {
                        Image <Bgr, Byte> TrainedImage = new Image <Bgr, Byte>(file);
                        fisherTrainingImages.Add(TrainedImage.Convert <Gray, Byte>());
                        if (eqHisChecked.Checked == true)
                        {
                            TrainedImage._EqualizeHist();
                        }
                        fisherlabels.Add(fileName(file));
                        fisherIntlabels.Add(fisherTrainedImageCounter);
                        fisherTrainedImageCounter++;
                        richTextBox1.Text += fileName(file) + "\n";
                    }
                    fisherFaceRecognizer = new FisherFaceRecognizer(fisherTrainedImageCounter, 2000);
                    fisherFaceRecognizer.Train(fisherTrainingImages.ToArray(), fisherIntlabels.ToArray());
                    //fisherFaceRecognizer.Save(dataDirectory + "\\trainedDataFisher.dat");
                }
                catch (Exception ex)
                {
                    MessageBox.Show(ex.ToString());
                    MessageBox.Show("Nothing in binary database, please add at least a face(Simply train the prototype with the Add Face Button).", "Triained faces load", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
                }
            }

            else if (comboBoxAlgorithm.Text == "LBPHFaces")
            {
                try
                {
                    string dataDirectory = Directory.GetCurrentDirectory() + "\\TrainedFaces";

                    string[] files = Directory.GetFiles(dataDirectory, "*.jpg", SearchOption.AllDirectories);
                    lbphTrainedImageCounter = 0;
                    foreach (var file in files)
                    {
                        Image <Bgr, Byte> TrainedImage = new Image <Bgr, Byte>(file);
                        if (eqHisChecked.Checked == true)
                        {
                            TrainedImage._EqualizeHist();
                        }
                        lbphTrainingImages.Add(TrainedImage.Convert <Gray, Byte>());
                        lbphlabels.Add(fileName(file));
                        lbphIntlabels.Add(lbphTrainedImageCounter);
                        lbphTrainedImageCounter++;
                        richTextBox1.Text += fileName(file) + "\n";
                    }
                    lbphFaceRecognizer = new LBPHFaceRecognizer(1, 8, 8, 8, 400);
                    lbphFaceRecognizer.Train(lbphTrainingImages.ToArray(), lbphIntlabels.ToArray());
                    lbphFaceRecognizer.Save(dataDirectory + "\\trainedDataLBPH.dat");
                }
                catch (Exception ex)
                {
                    MessageBox.Show(ex.ToString());
                    MessageBox.Show("Nothing in binary database, please add at least a face(Simply train the prototype with the Add Face Button).", "Triained faces load", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
                }
            }
        }