public void LogLikelihoodDerivative_MultipleResponses_MatchesFiniteDifferenceDerivative()
        {
            double alpha1 = .3;
            double delta1 = .1;
            double chi1   = .2;
            ThreeParamModelParameters modelParameters1 = new ThreeParamModelParameters(alpha1, delta1, chi1);

            double alpha2 = .5;
            double delta2 = .6;
            double chi2   = .7;
            ThreeParamModelParameters modelParameters2 = new ThreeParamModelParameters(alpha2, delta2, chi2);

            ThreeParamModelParameters modelParameters3 = new ThreeParamModelParameters(alpha2, delta2, chi2);

            List <IModelParameters> modelParameterList = new List <IModelParameters>();

            modelParameterList.Add(modelParameters1);
            modelParameterList.Add(modelParameters2);
            modelParameterList.Add(modelParameters3);

            LogLikelihoodFunction logLikelihoodFunction = new LogLikelihoodFunction(modelParameterList);

            double     theta          = .4;
            List <int> responseVector = new List <int>()
            {
                1, 0, 1
            };
            OneDimensionalFunction function          = x => logLikelihoodFunction.LogLikelihood(responseVector, x);
            FiniteDifferencer      finiteDifferencer = new FiniteDifferencer(function);

            double logLikelihoodDerivative    = logLikelihoodFunction.LogLikelihoodFirstDerivative(responseVector, theta);
            double finiteDifferenceDerivative = finiteDifferencer.ApproximateDerivative(theta);

            Assert.AreEqual(finiteDifferenceDerivative, logLikelihoodDerivative, Tolerance);
        }
        public void ApproximateDerivative_CosAtZeroDerivative_ReturnsApproxDerivativeWithinTolerance()
        {
            OneDimensionalFunction f = Math.Cos;

            FiniteDifferencer finiteDifferencer = new FiniteDifferencer(f);
            var approxDerivative = finiteDifferencer.ApproximateDerivative(0);

            double expectedDerivative = 0;

            CheckWithinTolerance(expectedDerivative, approxDerivative);
        }
        public void ApproximateDerivative_SimpleQuadraticAtNonZeroDerivative_ReturnsApproxDerivativeWithinTolerance()
        {
            OneDimensionalFunction f = x => x * x;

            FiniteDifferencer finiteDifferencer = new FiniteDifferencer(f);
            var approxDerivative = finiteDifferencer.ApproximateDerivative(.5);

            double expectedDerivative = 2 * .5;

            CheckWithinTolerance(expectedDerivative, approxDerivative);
        }
Exemplo n.º 4
0
        public void SecondThetaDerivative_NonTrivialInput_CloseToFiniteDifferenceValue()
        {
            double alpha = .2;
            double delta = .3;
            TwoParamModelParameters     parameters          = new TwoParamModelParameters(alpha, delta);
            TwoParamProbabilityFunction probabilityFunction = new TwoParamProbabilityFunction(parameters);
            FiniteDifferencer           finiteDifferencer   = new FiniteDifferencer(x => probabilityFunction.FirstThetaDerivative(x));

            double theta                  = .1;
            double secondDerivative       = probabilityFunction.SecondThetaDerivative(theta);
            double approxSecondDerivative = finiteDifferencer.ApproximateDerivative(theta);

            Assert.IsTrue(Math.Abs(secondDerivative - approxSecondDerivative) < Tolerance);
        }
        public void FirstThetaDerivative_NonTrivialInput_CloseToFiniteDifferenceValue()
        {
            double alpha = .2;
            double delta = .3;
            double chi   = .4;
            ThreeParamModelParameters     parameters          = new ThreeParamModelParameters(alpha, delta, chi);
            ThreeParamProbabilityFunction probabilityFunction = new ThreeParamProbabilityFunction(parameters);
            FiniteDifferencer             finiteDifferencer   = new FiniteDifferencer(x => probabilityFunction.ProbabilityOfCorrectResponse(x));

            double theta            = .1;
            double derivative       = probabilityFunction.FirstThetaDerivative(theta);
            double approxDerivative = finiteDifferencer.ApproximateDerivative(theta);

            Assert.IsTrue(Math.Abs(derivative - approxDerivative) < Tolerance);
        }