FastForest(
            this SweepableBinaryClassificationTrainers trainer,
            string labelColumnName   = "Label",
            string featureColumnName = "Features",
            SweepableOption <FastForestBinaryTrainer.Options> optionBuilder = null,
            FastForestBinaryTrainer.Options defaultOption = null)
        {
            var context = trainer.Context;

            if (optionBuilder == null)
            {
                optionBuilder = FastForestBinaryTrainerSweepableOptions.Default;
            }

            optionBuilder.SetDefaultOption(defaultOption);
            return(context.AutoML().CreateSweepableEstimator(
                       (context, option) =>
            {
                option.LabelColumnName = labelColumnName;
                option.FeatureColumnName = featureColumnName;

                return context.BinaryClassification.Trainers.FastForest(option);
            },
                       optionBuilder,
                       new string[] { labelColumnName, featureColumnName },
                       new string[] { PredictedLabel },
                       nameof(FastForestBinaryTrainer)));
        }
Exemplo n.º 2
0
        /// <summary>
        /// Create <see cref="FastForestBinaryTrainer"/> with advanced options, which predicts a target using a decision tree regression model.
        /// </summary>
        /// <param name="catalog">The <see cref="BinaryClassificationCatalog"/>.</param>
        /// <param name="options">Trainer options.</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[FastForestBinaryClassification](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/FastForestWithOptions.cs)]
        /// ]]>
        /// </format>
        /// </example>

        public static FastForestBinaryTrainer FastForest(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog,
                                                         FastForestBinaryTrainer.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            Contracts.CheckValue(options, nameof(options));

            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastForestBinaryTrainer(env, options));
        }
Exemplo n.º 3
0
        public override IEstimator <ITransformer> BuildFromOption(MLContext context, FastForestOption param)
        {
            var option = new FastForestBinaryTrainer.Options()
            {
                NumberOfTrees           = param.NumberOfTrees,
                LabelColumnName         = param.LabelColumnName,
                FeatureColumnName       = param.FeatureColumnName,
                ExampleWeightColumnName = param.ExampleWeightColumnName,
                FeatureFraction         = param.FeatureFraction,
                NumberOfThreads         = AutoMlUtils.GetNumberOfThreadFromEnvrionment(),
            };

            return(context.MulticlassClassification.Trainers.OneVersusAll(context.BinaryClassification.Trainers.FastForest(option), labelColumnName: param.LabelColumnName));
        }
Exemplo n.º 4
0
        public void TestFastForestBinaryFeaturizationInPipeline()
        {
            int dataPointCount = 200;
            var data           = SamplesUtils.DatasetUtils.GenerateBinaryLabelFloatFeatureVectorFloatWeightSamples(dataPointCount).ToList();
            var dataView       = ML.Data.LoadFromEnumerable(data);

            dataView = ML.Data.Cache(dataView);

            var trainerOptions = new FastForestBinaryTrainer.Options
            {
                NumberOfThreads            = 1,
                NumberOfTrees              = 10,
                NumberOfLeaves             = 4,
                MinimumExampleCountPerLeaf = 10,
                FeatureColumnName          = "Features",
                LabelColumnName            = "Label"
            };

            var options = new FastForestBinaryFeaturizationEstimator.Options()
            {
                InputColumnName  = "Features",
                TreesColumnName  = "Trees",
                LeavesColumnName = "Leaves",
                PathsColumnName  = "Paths",
                TrainerOptions   = trainerOptions
            };

            var pipeline = ML.Transforms.FeaturizeByFastForestBinary(options)
                           .Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "Trees", "Leaves", "Paths"))
                           .Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures"));
            var model      = pipeline.Fit(dataView);
            var prediction = model.Transform(dataView);
            var metrics    = ML.BinaryClassification.Evaluate(prediction);

            Assert.True(metrics.Accuracy > 0.97);
            Assert.True(metrics.LogLoss < 0.07);
            Assert.True(metrics.AreaUnderPrecisionRecallCurve > 0.98);
        }
Exemplo n.º 5
0
        // This example requires installation of additional NuGet package
        // <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>.
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for exception tracking and logging,
            // as a catalog of available operations and as the source of randomness.
            // Setting the seed to a fixed number in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new FastForestBinaryTrainer.Options
            {
                // Only use 80% of features to reduce over-fitting.
                FeatureFraction = 0.8,
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 50.
                NumberOfTrees = 50
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers.FastForest(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different from training data.
            var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable <Prediction>(transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions
            foreach (var p in predictions.Take(5))
            {
                Console.WriteLine($"Label: {p.Label}, Prediction: {p.PredictedLabel}");
            }

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True

            // Evaluate the overall metrics
            var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(transformedTestData);

            Microsoft.ML.SamplesUtils.ConsoleUtils.PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.73
            //   AUC: 0.81
            //   F1 Score: 0.73
            //   Negative Precision: 0.77
            //   Negative Recall: 0.68
            //   Positive Precision: 0.69
            //   Positive Recall: 0.78
        }
        // This example requires installation of additional NuGet package
        // <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>.
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of data points to be transformed.
            var dataPoints = GenerateRandomDataPoints(100).ToList();

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);

            // ML.NET doesn't cache data set by default. Therefore, if one reads a
            // data set from a file and accesses it many times, it can be slow due
            // to expensive featurization and disk operations. When the considered
            // data can fit into memory, a solution is to cache the data in memory.
            // Caching is especially helpful when working with iterative algorithms
            // which needs many data passes.
            dataView = mlContext.Data.Cache(dataView);

            // Define input and output columns of tree-based featurizer.
            string labelColumnName   = nameof(DataPoint.Label);
            string featureColumnName = nameof(DataPoint.Features);
            string treesColumnName   = nameof(TransformedDataPoint.Trees);
            string leavesColumnName  = nameof(TransformedDataPoint.Leaves);
            string pathsColumnName   = nameof(TransformedDataPoint.Paths);

            // Define the configuration of the trainer used to train a tree-based
            // model.
            var trainerOptions = new FastForestBinaryTrainer.Options
            {
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 3.
                NumberOfTrees = 3,
                // Number of leaves per tree.
                NumberOfLeaves = 6,
                // Feature column name.
                FeatureColumnName = featureColumnName,
                // Label column name.
                LabelColumnName = labelColumnName
            };

            // Define the tree-based featurizer's configuration.
            var options = new FastForestBinaryFeaturizationEstimator.Options
            {
                InputColumnName  = featureColumnName,
                TreesColumnName  = treesColumnName,
                LeavesColumnName = leavesColumnName,
                PathsColumnName  = pathsColumnName,
                TrainerOptions   = trainerOptions
            };

            // Define the featurizer.
            var pipeline = mlContext.Transforms.FeaturizeByFastForestBinary(
                options);

            // Train the model.
            var model = pipeline.Fit(dataView);

            // Apply the trained transformer to the considered data set.
            var transformed = model.Transform(dataView);

            // Convert IDataView object to a list. Each element in the resulted list
            // corresponds to a row in the IDataView.
            var transformedDataPoints = mlContext.Data.CreateEnumerable <
                TransformedDataPoint>(transformed, false).ToList();

            // Print out the transformation of the first 3 data points.
            for (int i = 0; i < 3; ++i)
            {
                var dataPoint            = dataPoints[i];
                var transformedDataPoint = transformedDataPoints[i];
                Console.WriteLine("The original feature vector [" + String.Join(
                                      ",", dataPoint.Features) + "] is transformed to three " +
                                  "different tree-based feature vectors:");

                Console.WriteLine("  Trees' output values: [" + String.Join(",",
                                                                            transformedDataPoint.Trees) + "].");

                Console.WriteLine("  Leave IDs' 0-1 representation: [" + String
                                  .Join(",", transformedDataPoint.Leaves) + "].");

                Console.WriteLine("  Paths IDs' 0-1 representation: [" + String
                                  .Join(",", transformedDataPoint.Paths) + "].");
            }

            // Expected output:
            //  The original feature vector [0.8173254,0.7680227,0.5581612] is
            //  transformed to three different tree-based feature vectors:
            //    Trees' output values: [0.1111111,0.8823529].
            //    Leave IDs' 0-1 representation: [0,0,0,0,1,0,0,0,0,1,0].
            //    Paths IDs' 0-1 representation: [1,1,1,1,1,1,0,1,0].
            //  The original feature vector [0.5888848,0.9360271,0.4721779] is
            //  transformed to three different tree-based feature vectors:
            //    Trees' output values: [0.4545455,0.8].
            //    Leave IDs' 0-1 representation: [0,0,0,1,0,0,0,0,0,0,1].
            //    Paths IDs' 0-1 representation: [1,1,1,1,0,1,0,1,1].
            //  The original feature vector [0.2737045,0.2919063,0.4673147] is
            //  transformed to three different tree-based feature vectors:
            //    Trees' output values: [0.4545455,0.1111111].
            //    Leave IDs' 0-1 representation: [0,0,0,1,0,0,1,0,0,0,0].
            //    Paths IDs' 0-1 representation: [1,1,1,1,0,1,0,1,1].
        }