Exemplo n.º 1
0
        public string Predict(List <double> marks)
        {
            try
            {
                if (marks.Count() < 10)
                {
                    return("غير معلوم");
                }

                if (Model == null)
                {
                    if (!File.Exists("randomforest.xml"))
                    {
                        Learn("data.txt", 500, 266, 10);
                    }
                    Model = ClassificationForestModel.Load(() => new StreamReader(@"randomforest.xml"));
                }

                var lastTenMarks = marks.Skip(marks.Count - 10);

                F64Matrix observations = new F64Matrix(1, lastTenMarks.Count());
                for (var j = 0; j < lastTenMarks.Count(); j++)
                {
                    observations.At(0, j, lastTenMarks.ElementAt(j));
                }
                var v = Model.Predict(observations).First();
                Console.WriteLine("predict " + v);
                return(GetClass(v));
            }
            catch (Exception e)
            {
                Console.Error.WriteLine(e.Message);
                return("غير معلوم");
            }
        }
        /// <summary>
        /// Converts a list of n LearningCurvePoint to a n by 3 matrix
        /// with columns SampleSize, TrainingScore and ValidationScore.
        /// </summary>
        /// <param name="points"></param>
        /// <returns></returns>
        public static F64Matrix ToF64Matrix(this List <LearningCurvePoint> points)
        {
            if (points.Count == 0)
            {
                throw new ArgumentException("There must be at least one element in the list to convert to a matrix");
            }
            ;

            var matrix = new F64Matrix(points.Count, 3);

            for (int i = 0; i < points.Count; i++)
            {
                var point = points[i];
                matrix.At(i, 0, point.SampleSize);
                matrix.At(i, 1, point.TrainingScore);
                matrix.At(i, 2, point.ValidationScore);
            }

            return(matrix);
        }
Exemplo n.º 3
0
        /// <summary>
        /// Transposes matrix.
        /// Output is saved in the provided matrix transposed.
        /// </summary>
        /// <param name="matrix"></param>
        /// <param name="transposed"></param>
        /// <returns></returns>
        public static void TransposeF64(F64Matrix matrix, F64Matrix transposed)
        {
            var cols = matrix.ColumnCount;
            var rows = matrix.RowCount;

            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < cols; j++)
                {
                    transposed.At(j, i, matrix.At(i, j));
                }
            }
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="ensemblePredictions"></param>
        /// <param name="predictions"></param>
        public void Combine(F64Matrix ensemblePredictions, double[] predictions)
        {
            var cols = ensemblePredictions.ColumnCount;
            var rows = ensemblePredictions.RowCount;

            for (int i = 0; i < rows; i++)
            {
                var sum = 0.0;
                for (int j = 0; j < cols; j++)
                {
                    sum += ensemblePredictions.At(i, j);
                }
                predictions[i] = sum / (double)cols;
            }
        }
Exemplo n.º 5
0
        static void Parse(string dataPath, F64Matrix observations, List <double> targets, F64Matrix testObservations, List <double> actualTargets, int FEATURES_COUNT, int LEARNING_ROWS_COUNT)
        {
            var lines       = File.ReadAllLines(dataPath);
            int TOTAL_LINES = lines.Length;
            int i           = 0;

            foreach (var line in lines)
            {
                var j      = 0;
                var values = line.Trim().Split(' ');

                if (values.Length > FEATURES_COUNT)
                {
                    foreach (var t in values)
                    {
                        if (j >= LEARNING_ROWS_COUNT)
                        {
                            actualTargets.Add(Normlize(Double.Parse(t)));
                        }
                        else
                        {
                            targets.Add(Normlize(Double.Parse(t)));
                        }
                        j++;
                    }
                }
                else
                {
                    foreach (var r in values)
                    {
                        if (i < LEARNING_ROWS_COUNT)
                        {
                            observations.At(i, j, Normlize(Double.Parse(r)));
                        }
                        else
                        {
                            testObservations.At(i - LEARNING_ROWS_COUNT, j, Normlize(Double.Parse(r)));
                        }
                        j++;
                    }
                }
                i++;
            }
        }
Exemplo n.º 6
0
        /// <summary>
        /// Converts F64Matrix to float[][].
        /// </summary>
        /// <param name="matrix"></param>
        /// <returns></returns>
        public static float[][] ToFloatJaggedArray(this F64Matrix matrix)
        {
            var rows = matrix.RowCount;
            var cols = matrix.ColumnCount;

            var jaggedArray = new float[rows][];

            for (int row = 0; row < rows; row++)
            {
                var rowArray = new float[cols];

                for (int col = 0; col < cols; col++)
                {
                    rowArray[col] = (float)matrix.At(row, col);
                }
                jaggedArray[row] = rowArray;
            }

            return(jaggedArray);
        }
Exemplo n.º 7
0
        /// <summary>
        /// Converts F64Matrix to float[][].
        /// </summary>
        /// <param name="matrix"></param>
        /// <param name="rowIndices"></param>
        /// <returns></returns>
        public static float[][] ToFloatJaggedArray(this F64Matrix matrix, int[] rowIndices)
        {
            var rows = rowIndices.Length;
            var cols = matrix.ColumnCount;

            var jaggedArray = new float[rows][];

            for (int outputRow = 0; outputRow < rowIndices.Length; outputRow++)
            {
                var inputRow = rowIndices[outputRow];
                var rowArray = new float[cols];

                for (int col = 0; col < cols; col++)
                {
                    rowArray[col] = (float)matrix.At(inputRow, col);
                }
                jaggedArray[outputRow] = rowArray;
            }

            return(jaggedArray);
        }
        void FindBestSplit(F64Matrix observations, double[] residuals, double[] targets, double[] predictions, int[][] orderedElements,
                           GBMTreeCreationItem parentItem, bool[] parentInSample, int featureIndex, ConcurrentBag <GBMSplitResult> results)
        {
            var bestSplit = new GBMSplit
            {
                Depth         = parentItem.Depth,
                FeatureIndex  = -1,
                SplitIndex    = -1,
                SplitValue    = -1,
                Cost          = double.MaxValue,
                LeftConstant  = -1,
                RightConstant = -1,
                SampleCount   = parentItem.Values.Samples
            };

            var bestLeft  = GBMSplitInfo.NewEmpty();
            var bestRight = GBMSplitInfo.NewEmpty();

            var left  = GBMSplitInfo.NewEmpty();
            var right = parentItem.Values.Copy(NodePositionType.Right);

            var orderedIndices = orderedElements[featureIndex];
            var j = NextAllowedIndex(0, orderedIndices, parentInSample);

            // No allowed sample or valid split left.
            if (j >= orderedIndices.Length || orderedIndices.Length == 1)
            {
                return;
            }

            var currentIndex = orderedIndices[j];

            m_loss.UpdateSplitConstants(ref left, ref right, targets[currentIndex], residuals[currentIndex]);

            var previousValue = observations.At(currentIndex, featureIndex);

            while (right.Samples > 0)
            {
                j            = NextAllowedIndex(j + 1, orderedIndices, parentInSample);
                currentIndex = orderedIndices[j];
                var currentValue = observations.At(currentIndex, featureIndex);

                if (Math.Min(left.Samples, right.Samples) >= m_minimumSplitSize)
                {
                    if (previousValue != currentValue)
                    {
                        var cost = left.Cost + right.Cost;
                        if (cost < bestSplit.Cost)
                        {
                            bestSplit.FeatureIndex    = featureIndex;
                            bestSplit.SplitIndex      = j;
                            bestSplit.SplitValue      = (previousValue + currentValue) * .5;
                            bestSplit.LeftError       = left.Cost;
                            bestSplit.RightError      = right.Cost;
                            bestSplit.Cost            = cost;
                            bestSplit.CostImprovement = parentItem.Values.Cost - cost;
                            bestSplit.LeftConstant    = left.BestConstant;
                            bestSplit.RightConstant   = right.BestConstant;

                            bestLeft  = left.Copy();
                            bestRight = right.Copy();
                        }
                    }
                }

                m_loss.UpdateSplitConstants(ref left, ref right, targets[currentIndex], residuals[currentIndex]);
                previousValue = currentValue;
            }

            if (bestSplit.FeatureIndex != -1)
            {
                results.Add(new GBMSplitResult {
                    BestSplit = bestSplit, Left = bestLeft, Right = bestRight
                });
            }
        }
        /// <summary>
        /// Returns the agumented version of the data. Excluding the original.
        /// The each feature in the dataset must be scaled/normnalized between 0.0 and 1.0
        /// before the method works.
        /// </summary>
        /// <param name="dataset"></param>
        /// <returns></returns>
        public F64Matrix Agument(F64Matrix dataset)
        {
            var orgCols = dataset.ColumnCount;
            var orgRows = dataset.RowCount;

            var augmentation   = new F64Matrix(dataset.RowCount, dataset.ColumnCount);
            var indicesVisited = new HashSet <int>();

            var sample    = new double[orgCols];
            var candidate = new double[orgCols];

            indicesVisited.Clear();

            for (int j = 0; j < orgRows; j++)
            {
                if (indicesVisited.Contains(j))
                {
                    continue;
                }
                dataset.Row(j, sample);

                var closestDistance = double.MaxValue;
                var closestIndex    = -1;
                indicesVisited.Add(j);

                for (int f = 0; f < orgRows; f++)
                {
                    if (indicesVisited.Contains(f))
                    {
                        continue;
                    }
                    dataset.Row(f, candidate);

                    var distance = GetDistance(sample, candidate);
                    if (distance < closestDistance)
                    {
                        closestDistance = distance;
                        closestIndex    = f;
                    }
                }

                if (closestIndex != -1)
                {
                    dataset.Row(closestIndex, candidate);
                    indicesVisited.Add(closestIndex);

                    for (int h = 0; h < sample.Length; h++)
                    {
                        var sampleValue   = sample[h];
                        var candiateValue = candidate[h];

                        if (m_random.NextDouble() <= m_probabilityParameter && m_probabilityParameter != 0.0)
                        {
                            var std = (sampleValue - candiateValue) / m_localVariance;

                            augmentation.At(j, h, SampleRandom(candiateValue, std));
                            augmentation.At(closestIndex, h, SampleRandom(sampleValue, std));
                        }
                        else // keep values
                        {
                            augmentation.At(j, h, sampleValue);
                            augmentation.At(closestIndex, h, candiateValue);
                        }
                    }
                }
            }

            return(augmentation);
        }