Exemplo n.º 1
0
        public void TestDistanceOneDimension()
        {
            double[] p1 = new double[1] {
                2
            };
            double[] p2 = new double[1] {
                4
            };
            double expectedDistance = 2;
            var    dtw      = new Dtw();
            double distance = dtw.Distance(p1, p2);

            Assert.AreEqual(expectedDistance, distance);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Aggregates the input features and executes the <see cref="Dtw"/> algorithm.
        /// </summary>
        /// <param name="signature1"></param>
        /// <param name="signature2"></param>
        /// <returns>Cost between <paramref name="signature1"/> and <paramref name="signature2"/></returns>
        public double Pair(Signature signature1, Signature signature2)
        {
            Progress = 0;
            Dtw dtwAlg = new Dtw(distanceMethod);


            double[][] testSig1 = signature1.GetAggregateFeature(InputFeatures).ToArray();
            double[][] testSig2 = signature2.GetAggregateFeature(InputFeatures).ToArray();
            Progress = 50;//..
            double cost = dtwAlg.Compute(testSig1, testSig2);

            Log(LogLevel.Info, $"Paired SigID {signature1.ID} with SigID {signature2.ID}");
            Log(LogLevel.Debug, $"Pairing result of SigID {signature1.ID} with SigID {signature2.ID}: {cost}");
            Progress = 100;
            return(cost);
        }
Exemplo n.º 3
0
        //Azokat a dolgokat amiket a verifier előfeldolgoz itt nincsenek csak részben
        //a loadsignature-ben van valami minimáis előfeldolgozás
        private void GoDTWButton_Click(object sender, RoutedEventArgs e)
        {
            if (Signers == null)
            {
                LoadSignatures();
            }

            Signature signature1 = Signers[(int)SignerComboBox1.SelectedValue - 1].Signatures[(int)SignatureComboBox1.SelectedIndex];
            Signature signature2 = Signers[(int)SignerComboBox2.SelectedValue - 1].Signatures[(int)SignatureComboBox2.SelectedIndex];

            //DTWScoreTextBlock.Text = Analyzer.GetCost(sig1, sig2, true).Cost.ToString();
            Dtw dtw = new Dtw(signature1, signature2, FeatureFilter);

            OwnDTWScoreTextBlock.Text      = dtw.CalculateDtwScore().ToString();
            WarpingPathScoreTextBlock.Text = dtw.CalculateWarpingPathScore().ToString();
            FusionScoreTextBlock.Text      = FusedScore.CalculateFusionOfDtwAndWPathScore(signature1, new Signature[] { signature2 }, FeatureFilter).ToString();
        }
Exemplo n.º 4
0
        public override double GetDistance(AudioFeature f, AudioFeature.DistanceType t)
        {
            if (!(f is Scms))
            {
                new Exception("Can only handle AudioFeatures of type Scms, not of: " + f);
                return(-1);
            }
            Scms other = (Scms)f;

            DistanceMeasure distanceMeasure = DistanceMeasure.Euclidean;

            switch (t)
            {
            case AudioFeature.DistanceType.Dtw_Euclidean:
                distanceMeasure = DistanceMeasure.Euclidean;
                break;

            case AudioFeature.DistanceType.Dtw_SquaredEuclidean:
                distanceMeasure = DistanceMeasure.SquaredEuclidean;
                break;

            case AudioFeature.DistanceType.Dtw_Manhattan:
                distanceMeasure = DistanceMeasure.Manhattan;
                break;

            case AudioFeature.DistanceType.Dtw_Maximum:
                distanceMeasure = DistanceMeasure.Maximum;
                break;

            case AudioFeature.DistanceType.UCR_Dtw:
                return(UCRCSharp.UCR.DTW(this.GetArray(), other.GetArray()));

            case AudioFeature.DistanceType.CosineSimilarity:
                return(CosineSimilarity(this, other));

            case AudioFeature.DistanceType.BitStringHamming:
                return(Imghash.ImagePHash.HammingDistance(this.BitString, other.BitString));

            case AudioFeature.DistanceType.KullbackLeiblerDivergence:
            default:
                return(Distance(this, other, new ScmsConfiguration(Analyzer.MFCC_COEFFICIENTS)));
            }
            Dtw dtw = new Dtw(this.GetArray(), other.GetArray(), distanceMeasure, true, true, null, null, null);

            return(dtw.GetCost());
        }
Exemplo n.º 5
0
        private double CalculateCost(SignModel sm1, SignModel sm2)
        {
            var seriesVariables = new List <SeriesVariable>();

            seriesVariables.Add(
                new SeriesVariable(
                    sm1.H_horizantal.ToArray(),
                    sm2.H_horizantal.ToArray()));
            seriesVariables.Add(
                new SeriesVariable(
                    sm1.H_vertical.ToArray(),
                    sm2.H_vertical.ToArray()));

            var seriesVariablesArray = seriesVariables.ToArray();

            var dtw = new Dtw(seriesVariablesArray);

            m_dtw = dtw;
            return(dtw.GetCost());
        }
Exemplo n.º 6
0
        public void TestComputeTwoDimension()
        {
            double[][] signature1 = new double[3][];

            //Two dimension points. another test required for one dimension points.
            signature1[0] = new double[] { 1, 4 };
            signature1[1] = new double[] { 2, 5 };
            signature1[2] = new double[] { 3, 8 };

            double[][] signature2 = new double[3][];
            signature2[0] = new double[] { 1, 5 };
            signature2[1] = new double[] { 2, 6 };
            signature2[2] = new double[] { 3, 8 };


            var    dtw          = new Dtw();
            double cost         = dtw.Compute(signature1, signature2);
            double expectedCost = 0;

            Assert.AreEqual(expectedCost, cost);
        }
Exemplo n.º 7
0
        public void TestComputeOneDimension()
        {
            double[][] signature1 = new double[3][];

            //One dimension points.
            signature1[0] = new double[] { 4 };
            signature1[1] = new double[] { 5 };
            signature1[2] = new double[] { 8 };

            double[][] signature2 = new double[3][];
            signature2[0] = new double[] { 4 };
            signature2[1] = new double[] { 5 };
            signature2[2] = new double[] { 8 };


            var    dtw          = new Dtw();
            double cost         = dtw.Compute(signature1, signature2);
            double expectedCost = 0;

            Assert.AreEqual(expectedCost, cost);
        }
Exemplo n.º 8
0
        public void TestSameInput()
        {
            double[][] signature1 = new double[3][];

            //Two dimension points. another test required for one dimension points.
            signature1[0] = new double[] { 1, 4 };
            signature1[1] = new double[] { 2, 5 };
            signature1[2] = new double[] { 3, 8 };

            double[][] signature2 = new double[3][];
            signature2[0] = new double[] { 1, 4 };
            signature2[1] = new double[] { 2, 5 };
            signature2[2] = new double[] { 3, 8 };

            var    dtw              = new Dtw();
            double cost             = dtw.Compute(signature1, signature2);
            double expectedCost     = 0;
            double expectedDistance = 0;
            double distance         = dtw.Distance(signature1[1], signature2[1]);

            Assert.AreEqual(expectedDistance, distance);
            Assert.AreEqual(expectedCost, cost);
        }
Exemplo n.º 9
0
        /// <summary>Get Distance</summary>
        /// <seealso cref="">comirva.audio.feature.AudioFeature#GetDistance(comirva.audio.feature.AudioFeature)</seealso>
        public override double GetDistance(AudioFeature f, AudioFeature.DistanceType t)
        {
            if (!(f is MandelEllis))
            {
                new Exception("Can only handle AudioFeatures of type Mandel Ellis, not of: " + f);
                return(-1);
            }
            MandelEllis other = (MandelEllis)f;

            DistanceMeasure distanceMeasure = DistanceMeasure.Euclidean;

            switch (t)
            {
            case AudioFeature.DistanceType.Dtw_Euclidean:
                distanceMeasure = DistanceMeasure.Euclidean;
                break;

            case AudioFeature.DistanceType.Dtw_SquaredEuclidean:
                distanceMeasure = DistanceMeasure.SquaredEuclidean;
                break;

            case AudioFeature.DistanceType.Dtw_Manhattan:
                distanceMeasure = DistanceMeasure.Manhattan;
                break;

            case AudioFeature.DistanceType.Dtw_Maximum:
                distanceMeasure = DistanceMeasure.Maximum;
                break;

            case AudioFeature.DistanceType.KullbackLeiblerDivergence:
            default:
                return(KullbackLeibler(this.gmmMe, other.gmmMe) + KullbackLeibler(other.gmmMe, this.gmmMe));
            }
            Dtw dtw = new Dtw(this.GetArray(), other.GetArray(), distanceMeasure, true, true, null, null, null);

            return(dtw.GetCost());
        }
Exemplo n.º 10
0
        public void TestComputeDifferentLenghtInput() //SameLengthInput already tested in the previous tests.
        {
            double[][] signature1 = new double[3][];

            //Two dimension points. another test required for one dimension points.
            signature1[0] = new double[] { 1, 4 };
            signature1[1] = new double[] { 2, 5 };
            signature1[2] = new double[] { 3, 8 };

            double[][] signature2 = new double[4][];
            signature2[0] = new double[] { 1, 6 };
            signature2[1] = new double[] { 2, 7 };
            signature2[2] = new double[] { 3, 10 };
            signature2[3] = new double[] { 4, 12 };

            var    dtw              = new Dtw();
            double cost             = dtw.Compute(signature1, signature2);
            double expectedCost     = 0.25;
            double expectedDistance = 2;
            double distance         = dtw.Distance(signature1[1], signature2[1]);

            Assert.AreEqual(expectedDistance, distance);
            Assert.AreEqual(expectedCost, cost);
        }
Exemplo n.º 11
0
        /// <summary>
        /// Generate average of supplied series.
        /// </summary>
        public static double[] Average(List <double[]> series, int maxIterations = 100)
        {
            if (series == null || series.Count == 0)
            {
                throw new Exception("series null or empty");
            }
            if (series.Count == 1)
            {
                return(series[0]);
            }
            if (series.Select(x => x.Length).Distinct().Count() != 1)
            {
                throw new Exception("Series must be of equal length");
            }

            int length = series[0].Length;

            //initializing the average to a simple mean of every point, without DTW
            //double[] average = new double[length];
            //for (int i = 0; i < series[0].Length; i++)
            //{
            //    average[i] = series.Average(x => x[i]);
            //}

            //initialize to a random series from the input
            //var r = new Random();
            //double[] average = series[r.Next(0, series.Count - 1)];

            //initialize to series closest to median min/max after detrending
            List <double[]> tempSeries     = series.Select(Detrend).ToList();
            List <int>      maxIndexes     = tempSeries.Select(x => x.IndexOfMax()).ToList();
            List <int>      minIndexes     = tempSeries.Select(x => x.IndexOfMin()).ToList();
            double          medianMaxIndex = maxIndexes.Median();
            double          medianMinIndex = minIndexes.Median();
            var             distances      = maxIndexes.Select((x, i) => Math.Pow(x - medianMaxIndex, 2) + Math.Pow(minIndexes[i] - medianMinIndex, 2)).ToList();
            int             selectedSeries = distances.IndexOfMin();

            double[] average = series[selectedSeries];

            //this list will hold the values of each aligned point,
            //later used to construct the aligned average
            List <double>[] points = new List <double> [length];
            for (int i = 0; i < length; i++)
            {
                points[i] = new List <double>();
            }

            double prevTotalDist = -1;
            double totalDist     = -2;

            //sometimes the process gets "stuck" in a loop between two different states
            //so we have to set a hard limit to end the loop
            int count = 0;

            //get the path between each series and the average
            while (totalDist != prevTotalDist && count < maxIterations)
            {
                prevTotalDist = totalDist;

                //clear the points from the last calculation
                foreach (var list in points)
                {
                    list.Clear();
                }

                //here we do the alignment for every series
                foreach (double[] ts in series)
                {
                    var dtw = new Dtw(new[] { new SeriesVariable(ts, average) });
                    Tuple <int, int>[] path = dtw.GetPath();

                    //use the path to distribute the points according to the warping
                    Array.ForEach(path, x => points[x.Item2].Add(ts[x.Item1]));
                }

                //Then simply construct the new average series by taking the mean of every List in points.
                average = points.Select(x => x.Average()).ToArray();

                //calculate Euclidean distance to stop the loop if no further improvement can be made
                double[] average1 = average;
                totalDist = series.Sum(x => x.Select((y, i) => Math.Pow(y - average1[i], 2)).Sum()); //we get convergence even though there's still work to be done
                count++;
            }

            return(average);
        }
Exemplo n.º 12
0
        static void DTWCsv(string[] files)
        {
            for (int fileId = 0; fileId < files.Length; fileId++)
            {
                if (File.Exists(files[fileId].Split('\\').Last() + "_pearsonDataCsv.txt"))
                {
                    File.Copy(files[fileId].Split('\\').Last() + "_pearsonDataCsv.txt", files[fileId] + "_pearsonDataCsv.txt", true);
                    //Console.WriteLine("Copied " + files[fileId].Split('\\').Last() + "_pearsonDataCsv.txt" + " to " + files[fileId] + "_pearsonDataCsv.txt");

                    if (File.Exists(files[fileId].Split('\\').Last() + "dtwCostInfo.txt"))
                    {
                        File.Copy(files[fileId].Split('\\').Last() + "_pearsonDataCsv.txt", files[fileId] + "dtwCostInfo.txt", true);
                    }
                    Console.WriteLine(files[fileId].Split('\\').Last() + " is already done, skipping.");
                    continue;
                }
                var freed = GC.GetTotalMemory(false);
                GC.Collect(GC.MaxGeneration, GCCollectionMode.Forced, true);
                Console.WriteLine("Garbage Collection completed - memory:" + ((double)GC.GetTotalMemory(false) / 1024 / 1024 / 1024).ToString("0.0") + " GB (freed " + (freed / 1024 / 1024) + " MB)");
                Console.WriteLine("Performing DTW on csv data " + fileId + " of " + files.Length + "..");
                var      watch = System.Diagnostics.Stopwatch.StartNew();
                string[] data  = File.ReadAllLines(files[fileId]);
                Console.WriteLine("Data points: " + data.Length);

                List <double> testDataPoints   = new List <double>();
                List <double> recallDataPoints = new List <double>();
                foreach (var line in data)
                {
                    var    split  = line.Replace(',', '.').Split(';');
                    double test   = double.Parse(split[0], System.Globalization.CultureInfo.InvariantCulture);
                    double recall = double.Parse(split[1], System.Globalization.CultureInfo.InvariantCulture);

                    testDataPoints.Add(test);
                    recallDataPoints.Add(recall);
                }

                //                Dtw dtw = new Dtw(testDataPoints.ToArray(), recallDataPoints.ToArray(), DistanceMeasure.Euclidean, true, true, null, null, 700);
                Dtw dtw = new Dtw(testDataPoints.ToArray(), recallDataPoints.ToArray(), DistanceMeasure.Euclidean, true, true, slopeStepSizeDiagonal: 2, slopeStepSizeAside: 1);

                var path = dtw.GetPath();
                var cost = dtw.GetCost();
                //var distanceMatrix = dtw.GetDistanceMatrix();
                //var costMatrix = dtw.GetCostMatrix();

                File.WriteAllText(files[fileId].Split('\\').Last() + "dtwCostInfo.txt",
                                  "cost=" + cost +
                                  "\nbefore_length=" + data.Length +
                                  "\nbefore_cost=" + (cost / data.Length) +
                                  "\nafter_length=" + path.Length +
                                  "\nafter_cost=" + (cost / path.Length)
                                  );

                //PngExporter pngify = new PngExporter();
                //pngify.Width = 36000;
                //pngify.Height = 4000;

                //var model = new PlotModel() { Title = "Red = test, blue = recall" };

                //var aSeries = new OxyPlot.Series.LineSeries() { Color = OxyColors.Blue, MarkerSize = 10 };
                //var bSeries = new OxyPlot.Series.LineSeries() { Color = OxyColors.Red, MarkerSize = 10 };

                //for (int i = 0; i < testDataPoints.Count; i++)
                //{
                //    aSeries.Points.Add(new DataPoint(i, testDataPoints[i]));
                //}

                //for (int i = 0; i < recallDataPoints.Count; i++)
                //{
                //    bSeries.Points.Add(new DataPoint(i, recallDataPoints[i]));
                //}

                //List<string> pearsonData = new List<string>();
                //foreach (var pairing in path)
                //{
                //    var lineSeries = new OxyPlot.Series.LineSeries() { Color = OxyColors.Gray, MarkerSize = 0.05 };

                //    lineSeries.Points.Add(new DataPoint(pairing.Item1, testDataPoints[pairing.Item1]));
                //    lineSeries.Points.Add(new DataPoint(pairing.Item2, recallDataPoints[pairing.Item2]));

                //    model.Series.Add(lineSeries);

                //    pearsonData.Add(testDataPoints[pairing.Item1].ToString().Replace(',', '.') + ";" + recallDataPoints[pairing.Item2].ToString().Replace(',', '.'));
                //}

                //var pears = MathNet.Numerics.Statistics.Correlation.Pearson(path.Select(x => testDataPoints[x.Item1]).ToList(), path.Select(x => recallDataPoints[x.Item2]).ToList());
                //Console.WriteLine("Pearson for " + files[fileId] + ":");
                //Console.WriteLine(pears.ToString());

                //File.WriteAllLines(files[fileId].Split('\\').Last() + "_pearsonDataCsv.txt", pearsonData);

                //model.Series.Add(aSeries);
                //model.Series.Add(bSeries);

                //pngify.ExportToFile(model, files[fileId].Split('\\').Last() + "_csv.png");
                watch.Stop();
                Console.WriteLine("Done in " + watch.Elapsed);
                Console.WriteLine("");
            }
        }
Exemplo n.º 13
0
        void waveSource_DataAvailable(object sender, WaveInEventArgs e)
        {
            //int max = 0;



            byte[] buffer        = e.Buffer;
            int    bytesRecorded = e.BytesRecorded;

            //WriteToFile(buffer, bytesRecorded);

            for (int index = 0; index < e.BytesRecorded; index += 2)
            {
                short sample = (short)((buffer[index + 1] << 8) |
                                       buffer[index + 0]);
                float sample32 = (sample / 32768f);


                //int finalSample =(sample32 * 255);
                //if (max < finalSample) max = finalSample;
                //sampleAggregator.Add(sample32);
                queue.Enqueue(sample32);



                //queue.print();
            }

            long curTime = DateTime.Now.Ticks / TimeSpan.TicksPerSecond;



            if (lastDetect + 2 > curTime)
            {
                Console.WriteLine("LAST GEST" + lastDetect + 5 + "  " + curTime);
                return;
            }

            //check if sample matches
            int    gest     = 0;
            double lastcost = 1000;

            if (isSaved1 /*&& (loop++%3==0)*/)
            {
                long curTimeMs1 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; //Time Calc

                var cost = new Dtw(saved1, queue.ToArray2()).GetCost();

                long curTimeMs2 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; //Time Calc

                if (cost < lastcost && cost < thresh1)
                {
                    gest = 1; lastcost = cost; Console.WriteLine("G1: " + cost);
                }
                //Debug.WriteLineIf( cost<thresh1, "1:"+cost);

                Console.WriteLine("Time DTW Took for Gesture 1 in ms: " + (curTimeMs2 - curTimeMs1));
                //Console.WriteLine("MS 2: " + curTimeMs2);
            }
            if (isSaved2 /*&& (loop++%3==0)*/)
            {
                var cost = new Dtw(saved2, queue.ToArray2()).GetCost();
                if (cost < lastcost && cost < thresh2)
                {
                    gest     = 2;
                    lastcost = cost;
                    Console.WriteLine("G2: " + cost);
                }
                //Debug.WriteLineIf(cost < thresh2, "2:"+cost);
            }
            if (isSaved3 /*&& (loop++%3==0)*/)
            {
                var cost = new Dtw(saved3, queue.ToArray2()).GetCost();
                if (cost < lastcost && cost < thresh3)
                {
                    gest = 3; lastcost = cost; Console.WriteLine("G3: " + cost);
                }
                //Debug.WriteLineIf(cost < thresh3, "3:"+cost);
            }
            foreach (double[] s in falseSaved)
            {
                var cost = new Dtw(s, queue.ToArray2()).GetCost();
                if (cost < lastcost && cost < thresh0)
                {
                    gest = 0; lastcost = cost;
                }
            }

            thresh1 = Convert.ToDouble("0" + txtThres1.Text);

            thresh2 = Convert.ToDouble("0" + txtThres2.Text);
            thresh3 = Convert.ToDouble("0" + txtThres3.Text);


            if (gest > 0)
            {
                lastDetect  = DateTime.Now.Ticks / TimeSpan.TicksPerSecond;
                lastGesture = gest;
                Debug.WriteLine("DETECTED " + gest + " " + lastcost);
            }

            if (gest == 1)
            {
                lbl1.Visible = true;
                lbl2.Visible = false;
                lbl3.Visible = false;

                SerialForm.SendLeft();
                ArrowForm.ShowLeft();
            }
            else if (gest == 2)
            {
                lbl1.Visible = false;
                lbl2.Visible = true;
                lbl3.Visible = false;

                SerialForm.SendCenter();
                ArrowForm.ShowCenter();
            }
            else if (gest == 3)
            {
                lbl1.Visible = false;
                lbl2.Visible = false;
                lbl3.Visible = true;

                SerialForm.SendRight();
                ArrowForm.ShowRight();
            }
            else
            {
                lbl1.Visible = false;
                lbl2.Visible = false;
                lbl3.Visible = false;
                ArrowForm.ShowNone();
            }
            //else Debug.WriteLine("NONE");
            //Debug.WriteLine(max.ToString());
        }
Exemplo n.º 14
0
 public void SetData(Dtw dtw)
 {
     dtwGraph.Dtw = dtw;
 }
Exemplo n.º 15
0
        private void Recalculate()
        {
            if (!CanRecalculate)
                return;

            var seriesVariables = new List<SeriesVariable>();
            foreach (var selectedVariable in SelectedVariables)
            {
                seriesVariables.Add(
                    new SeriesVariable(
                        DataSeries.GetValues(_selectedEntities[0], selectedVariable.Name).ToArray(),
                        DataSeries.GetValues(_selectedEntities[1], selectedVariable.Name).ToArray(),
                        selectedVariable.Name,
                        selectedVariable.Preprocessor,
                        selectedVariable.Weight));
            }

            var seriesVariablesArray = seriesVariables.ToArray();

            var dtw = new Dtw(
                seriesVariablesArray,
                SelectedDistanceMeasure.Value,
                UseBoundaryConstraintStart,
                UseBoundaryConstraintEnd,
                UseSlopeConstraint ? SlopeConstraintDiagonal : (int?)null,
                UseSlopeConstraint ? SlopeConstraintAside : (int?)null,
                UseSakoeChibaMaxShift ? SakoeChibaMaxShift : (int?)null);

            if (MeasurePerformance)
            {
                var swDtwPerformance = new Stopwatch();
                swDtwPerformance.Start();

                for (int i = 0; i < 250; i++)
                {
                    var tempDtw = new Dtw(
                        seriesVariablesArray,
                        SelectedDistanceMeasure.Value,
                        UseBoundaryConstraintStart,
                        UseBoundaryConstraintEnd,
                        UseSlopeConstraint ? SlopeConstraintDiagonal : (int?)null,
                        UseSlopeConstraint ? SlopeConstraintAside : (int?)null,
                        UseSakoeChibaMaxShift ? SakoeChibaMaxShift : (int?)null);
                    var tempDtwPath = tempDtw.GetCost();
                }
                swDtwPerformance.Stop();
                OperationDuration = swDtwPerformance.Elapsed;
            }

            Dtw = dtw;

            //Dtw = new Dtw(
            //    new[] { 4.0, 4.0, 4.5, 4.5, 5.0, 5.0, 5.0, 4.5, 4.5, 4.0, 4.0, 3.5 },
            //    new[] { 1.0, 1.5, 2.0, 2.5, 3.5, 4.0, 3.0, 2.5, 2.0, 2.0, 2.0, 1.5 },
            //    SelectedDistanceMeasure.Value,
            //    UseBoundaryConstraintStart,
            //    UseBoundaryConstraintEnd,
            //    UseSlopeConstraint ? SlopeConstraintDiagonal : (int?)null,
            //    UseSlopeConstraint ? SlopeConstraintAside : (int?)null,
            //    UseSakoeChibaMaxShift ? SakoeChibaMaxShift : (int?)null);
        }
Exemplo n.º 16
0
        private void Recalculate()
        {
            if (!CanRecalculate)
            {
                return;
            }

            var seriesVariables = new List <SeriesVariable>();

            foreach (var selectedVariable in SelectedVariables)
            {
                seriesVariables.Add(
                    new SeriesVariable(
                        DataSeries.GetValues(_selectedEntities[0], selectedVariable.Name).ToArray(),
                        DataSeries.GetValues(_selectedEntities[1], selectedVariable.Name).ToArray(),
                        selectedVariable.Name,
                        selectedVariable.Preprocessor,
                        selectedVariable.Weight));
            }

            var seriesVariablesArray = seriesVariables.ToArray();

            var dtw = new Dtw(
                seriesVariablesArray,
                SelectedDistanceMeasure.Value,
                UseBoundaryConstraintStart,
                UseBoundaryConstraintEnd,
                UseSlopeConstraint ? SlopeConstraintDiagonal : (int?)null,
                UseSlopeConstraint ? SlopeConstraintAside : (int?)null,
                UseSakoeChibaMaxShift ? SakoeChibaMaxShift : (int?)null);

            if (MeasurePerformance)
            {
                var swDtwPerformance = new Stopwatch();
                swDtwPerformance.Start();

                for (int i = 0; i < 250; i++)
                {
                    var tempDtw = new Dtw(
                        seriesVariablesArray,
                        SelectedDistanceMeasure.Value,
                        UseBoundaryConstraintStart,
                        UseBoundaryConstraintEnd,
                        UseSlopeConstraint ? SlopeConstraintDiagonal : (int?)null,
                        UseSlopeConstraint ? SlopeConstraintAside : (int?)null,
                        UseSakoeChibaMaxShift ? SakoeChibaMaxShift : (int?)null);
                    var tempDtwPath = tempDtw.GetCost();
                }
                swDtwPerformance.Stop();
                OperationDuration = swDtwPerformance.Elapsed;
            }

            Dtw = dtw;

            //Dtw = new Dtw(
            //    new[] { 4.0, 4.0, 4.5, 4.5, 5.0, 5.0, 5.0, 4.5, 4.5, 4.0, 4.0, 3.5 },
            //    new[] { 1.0, 1.5, 2.0, 2.5, 3.5, 4.0, 3.0, 2.5, 2.0, 2.0, 2.0, 1.5 },
            //    SelectedDistanceMeasure.Value,
            //    UseBoundaryConstraintStart,
            //    UseBoundaryConstraintEnd,
            //    UseSlopeConstraint ? SlopeConstraintDiagonal : (int?)null,
            //    UseSlopeConstraint ? SlopeConstraintAside : (int?)null,
            //    UseSakoeChibaMaxShift ? SakoeChibaMaxShift : (int?)null);
        }
Exemplo n.º 17
0
        public void OnDataChanged()
        {
            if (DrawCost && DrawDistance)
            {
                throw new Exception("Only one of the values can be drawn at once, 'cost' or 'distance'.");
            }

            double[][] matrixValues = null;
            if (DrawCost)
            {
                matrixValues = Dtw.GetCostMatrix();
            }
            if (DrawDistance)
            {
                matrixValues = Dtw.GetDistanceMatrix();
            }

            var dtwPath        = Dtw.GetPath();
            var xLength        = Dtw.XLength;
            var yLength        = Dtw.YLength;
            var cost           = Dtw.GetCost();
            var costNormalized = Dtw.GetCost() / Math.Sqrt(xLength * xLength + yLength * yLength);

            var plotModel = new PlotModel(String.Format("Dtw norm by length: {0:0.00}, total: {1:0.00}", costNormalized, cost))
            {
                LegendTextColor = DrawCost || DrawDistance ? OxyColors.White : OxyColors.Black,
            };

            if (matrixValues != null)
            {
                var maxMatrixValue = 0.0;
                for (int i = 0; i < xLength; i++)
                {
                    for (int j = 0; j < yLength; j++)
                    {
                        maxMatrixValue = Math.Max(maxMatrixValue, Double.IsPositiveInfinity(matrixValues[i][j]) ? 0 : matrixValues[i][j]);
                    }
                }

                for (int i = 0; i < xLength; i++)
                {
                    for (int j = 0; j < yLength; j++)
                    {
                        var value = matrixValues[i][j];
                        var isValuePositiveInfinity = Double.IsPositiveInfinity(value);

                        var intensityBytes = isValuePositiveInfinity ? new byte[] { 0, 0, 0 } : GetFauxColourRgbIntensity(value, 0, maxMatrixValue);
                        //var intensityByte = (byte)(255 - Math.Floor(255 * intensity));
                        plotModel.Annotations.Add(new PolygonAnnotation
                        {
                            Points =
                                new[]
                            {
                                new DataPoint(i - 0.5, j - 0.5), new DataPoint(i + 0.5, j - 0.5),
                                new DataPoint(i + 0.5, j + 0.5), new DataPoint(i - 0.5, j + 0.5),
                            },
                            StrokeThickness = 0,
                            Selectable      = false,
                            Layer           = AnnotationLayer.BelowAxes,
                            Fill            = OxyColor.FromArgb(255, intensityBytes[0], intensityBytes[1], intensityBytes[2]),
                        });
                    }
                }

                for (int i = 0; i < 30; i++)
                {
                    var intensityBytes = GetFauxColourRgbIntensity(i, 0, 29);

                    plotModel.Annotations.Add(new RectangleAnnotation
                    {
                        MinimumX   = -39,
                        MaximumX   = -25,
                        MinimumY   = -i - 6,
                        MaximumY   = -i - 5,
                        Selectable = false,
                        Fill       = OxyColor.FromArgb(255, intensityBytes[0], intensityBytes[1], intensityBytes[2])
                    });
                }

                plotModel.Annotations.Add(new TextAnnotation
                {
                    Position            = new DataPoint(-24, -5),
                    HorizontalAlignment = HorizontalTextAlign.Left,
                    VerticalAlignment   = VerticalTextAlign.Middle,
                    StrokeThickness     = 0,
                    Text = "0"
                });

                plotModel.Annotations.Add(new TextAnnotation
                {
                    Position            = new DataPoint(-24, -34),
                    HorizontalAlignment = HorizontalTextAlign.Left,
                    VerticalAlignment   = VerticalTextAlign.Middle,
                    StrokeThickness     = 0,
                    Text = String.Format("{0:0.00}", maxMatrixValue),
                });
            }

            var matrixPathSeries = new LineSeries("Path")
            {
                StrokeThickness = 1,
                Color           = OxyColors.Red,
            };

            for (int i = 0; i < dtwPath.Length; i++)
            {
                matrixPathSeries.Points.Add(new DataPoint(dtwPath[i].Item1, dtwPath[i].Item2));
            }

            plotModel.Series.Add(matrixPathSeries);

            var seriesMatrixScale = (xLength + yLength) * 0.05;

            for (int variableIndex = 0; variableIndex < Dtw.SeriesVariables.Length; variableIndex++)
            {
                var variableA       = Dtw.SeriesVariables[variableIndex];
                var variableASeries = variableA.OriginalXSeries;
                var variableB       = Dtw.SeriesVariables[variableIndex];
                var variableBSeries = variableB.OriginalYSeries;

                var minSeriesA        = variableASeries.Min();
                var maxSeriesA        = variableASeries.Max();
                var normalizedSeriesA = variableASeries.Select(x => (x - minSeriesA) / (maxSeriesA - minSeriesA)).ToList();
                var matrixSeriesA     = new LineSeries(variableA.VariableName);

                for (int i = 0; i < normalizedSeriesA.Count; i++)
                {
                    matrixSeriesA.Points.Add(new DataPoint(i, (-1 + normalizedSeriesA[i]) * seriesMatrixScale - 1 - seriesMatrixScale * (variableIndex + 1)));
                }

                plotModel.Series.Add(matrixSeriesA);

                var minSeriesB        = variableBSeries.Min();
                var maxSeriesB        = variableBSeries.Max();
                var normalizedSeriesB = variableBSeries.Select(x => (x - minSeriesB) / (maxSeriesB - minSeriesB)).ToList();
                var matrixSeriesB     = new LineSeries(variableB.VariableName);

                for (int i = 0; i < normalizedSeriesB.Count; i++)
                {
                    matrixSeriesB.Points.Add(new DataPoint(-normalizedSeriesB[i] * seriesMatrixScale - 1 - seriesMatrixScale * (variableIndex + 1), i));
                }

                plotModel.Series.Add(matrixSeriesB);
            }

            plotModel.Axes.Add(new LinearAxis(AxisPosition.Bottom, "           Series A")
            {
                Maximum = Math.Max(xLength, yLength), PositionAtZeroCrossing = true
            });
            plotModel.Axes.Add(new LinearAxis(AxisPosition.Left, "                  Series B")
            {
                Maximum = Math.Max(xLength, yLength), PositionAtZeroCrossing = true
            });

            MatrixPlot.Model = plotModel;
        }