Exemplo n.º 1
0
        /// <summary>
        /// Select a subset of items from a superset of a given size.
        /// </summary>
        /// <param name="supersetCount">The size of the superset to select from.</param>
        /// <param name="rng">Random source.</param>
        /// <returns>An array of indexes that are the selected items.</returns>
        public int[] SelectSubset(int supersetCount, IRandomSource rng)
        {
            // Note. Ideally we'd return a sorted list of indexes to improve performance of the code that consumes them,
            // however, the sampling process inherently produces samples in randomized order, thus the decision of whether
            // to sort or not depends on the cost to the code using the samples. I.e. don't sort here!
            int selectionCount = (int)NumericsUtils.StochasticRound(supersetCount * _selectionProportion, rng);

            int[] idxArr = new int[selectionCount];
            DiscreteDistribution.SampleUniformWithoutReplacement(rng, supersetCount, idxArr);
            return(idxArr);
        }
Exemplo n.º 2
0
        public void SampleUniformWithoutReplacement_SampleAllChoices()
        {
            const int     size = 5;
            IRandomSource rng  = RandomDefaults.CreateRandomSource();

            // Sample all of the elements.
            int[] sampleArr = new int[size];
            DiscreteDistribution.SampleUniformWithoutReplacement(rng, size, sampleArr);

            // Sort the samples.
            Array.Sort(sampleArr);

            // Confirm that all of the choices were selected.
            for (int i = 0; i < size; i++)
            {
                Assert.Equal(i, sampleArr[i]);
            }
        }
        private static void AssignGenomeFitnessScores(
            Species <double> species,
            int champGenomeCount,
            double champFitness,
            IRandomSource rng)
        {
            // Assign a fitness less than the champ fitness to all genomes.
            foreach (var genome in species.GenomeList)
            {
                double fitness = champFitness * rng.NextDouble();
                genome.FitnessInfo = new FitnessInfo(fitness);
            }

            // Select a random subset to be the champ genomes, and assign them the champ fitness.
            int[] idxArr = DiscreteDistribution.SampleUniformWithoutReplacement(rng, species.GenomeList.Count, champGenomeCount);
            foreach (int idx in idxArr)
            {
                var genome = species.GenomeList[idx];
                genome.FitnessInfo = new FitnessInfo(champFitness);
            }
        }
Exemplo n.º 4
0
    /// <summary>
    /// Creates a single randomly initialised genome.
    /// </summary>
    private NeatGenome <T> CreateGenome()
    {
        // Determine how many connections to create in the new genome, as a proportion of all possible connections
        // between the input and output nodes.
        int connectionCount = (int)NumericsUtils.StochasticRound(_connectionDefArr.Length * _connectionsProportion, _rng);

        // Ensure there is at least one connection.
        connectionCount = Math.Max(1, connectionCount);

        // Select a random subset of all possible connections between the input and output nodes.
        int[] sampleArr = new int[connectionCount];
        DiscreteDistribution.SampleUniformWithoutReplacement(
            _rng, _connectionDefArr.Length, sampleArr);

        // Sort the samples.
        // Note. This results in the neural net connections being sorted by sourceID then targetID.
        Array.Sort(sampleArr);

        // Create the connection gene arrays and populate them.
        var connGenes = new ConnectionGenes <T>(connectionCount);
        var connArr   = connGenes._connArr;
        var weightArr = connGenes._weightArr;

        for (int i = 0; i < sampleArr.Length; i++)
        {
            DirectedConnection cdef = _connectionDefArr[sampleArr[i]];

            connArr[i] = new DirectedConnection(
                cdef.SourceId,
                cdef.TargetId);

            weightArr[i] = _connWeightDist.Sample(_rng);
        }

        // Get create a new genome with a new ID, birth generation of zero.
        int id = _genomeIdSeq.Next();

        return(_genomeBuilder.Create(id, 0, connGenes));
    }