Exemplo n.º 1
0
        /// <summary>
        /// バックプロジェクションにより肌色領域を求める
        /// </summary>
        /// <param name="imgSrc"></param>
        /// <param name="hsvPlanes"></param>
        /// <param name="imgRender"></param>
        private void RetrieveFleshRegion(IplImage imgSrc, IplImage[] hsvPlanes, IplImage imgDst)
        {
            int[] histSize = new int[] {30, 32};
            float[] hRanges = {0.0f, 20f};
            float[] sRanges = {50f, 255f};
            float[][] ranges = {hRanges, sRanges};

            imgDst.Zero();
            using (CvHistogram hist = new CvHistogram(histSize, HistogramFormat.Array, ranges, true))
            {
                hist.Calc(hsvPlanes, false, null);
                float minValue, maxValue;
                hist.GetMinMaxValue(out minValue, out maxValue);
                hist.Normalize(imgSrc.Width * imgSrc.Height * 255 / maxValue);
                hist.CalcBackProject(hsvPlanes, imgDst);
            }
        }
Exemplo n.º 2
0
        /// <summary>
        /// Gets flesh regions by histogram back projection
        /// </summary>
        /// <param name="imgSrc"></param>
        /// <param name="hsvPlanes"></param>
        /// <param name="imgRender"></param>
        private void RetrieveFleshRegion(IplImage imgSrc, IplImage[] hsvPlanes, IplImage imgDst)
        {
            int[]     histSize = new int[] { 30, 32 };
            float[]   hRanges  = { 0.0f, 20f };
            float[]   sRanges  = { 50f, 255f };
            float[][] ranges   = { hRanges, sRanges };

            imgDst.Zero();
            using (CvHistogram hist = new CvHistogram(histSize, HistogramFormat.Array, ranges, true))
            {
                hist.Calc(hsvPlanes, false, null);
                float minValue, maxValue;
                hist.GetMinMaxValue(out minValue, out maxValue);
                hist.Normalize(imgSrc.Width * imgSrc.Height * 255 / maxValue);
                hist.CalcBackProject(hsvPlanes, imgDst);
            }
        }
    //  Takes an image and calculates its histogram in HSV color space
    // Color images have 3 channels (4 if you count alpha?)
    // Webcam captures them in (R)ed, (G)reen, (B)lue.
    // Convert to (H)ue, (S)aturation (V)alue to get better separation for thresholding
    CvHistogram CalculateHSVHistogram(CvMat _image)
    {
        // Hue, Saturation, Value or HSV is a color model that describes colors (hue or tint)
        // in terms of their shade (saturation or amount of gray)
        //	and their brightness (value or luminance).
        // For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]

        // hue varies from 0 to 179, see cvtColor
        float hueMin = 0, hueMax = 179;

        float[] hueRanges = new float[2] {
            hueMin, hueMax
        };
        // saturation varies from 0 (black-gray-white) to
        // 255 (pure spectrum color)
        float satMin = 0, satMax = 255;

        float[] saturationRanges = new float[2] {
            satMin, satMax
        };

        float valMin = 0, valMax = 255;

        float[] valueRanges = new float[2] {
            valMin, valMax
        };

        float[][] ranges = { hueRanges, saturationRanges, valueRanges };

        // Note: You don't need to use all 3 channels for the histogram.
        int hueBins   = 32;               // Number of bins in the Hue histogram (more bins = narrower bins)
        int satBins   = 32;               // Number of bins in the Saturation histogram (more bins = narrower bins)
        int valueBins = 8;                // Number of bins in the Value histogram (more bins = narrower bins)

        float maxValue = 0, minValue = 0; // Minimum and maximum value of calculated histogram

        // Number of bins per histogram channel
        // If we use all 3 channels (H, S, V) then the histogram will have 3 dimensions.
        int[] hist_size = new int[] { hueBins, satBins, valueBins };

        CvHistogram hist = new CvHistogram(hist_size, HistogramFormat.Array, ranges, true);

        using (CvMat _imageHSV = ConvertToHSV(_image)) // Convert the image to HSV
                                                       // We could keep the image in B, G, R, A if we wanted to.
                                                       // Just split the channels into B, G, R planes

            using (CvMat imgH = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
                using (CvMat imgS = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
                    using (CvMat imgV = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
                    {
                        // Break image into H, S, V planes
                        // If the image were RGB, then it would split into R, G, B planes respectively
                        _imageHSV.CvtPixToPlane(imgH, imgS, imgV, null); // Cv.Split also does this

                        // Store HSV planes as an IplImage array to pass to openCV's hist function
                        IplImage[] hsvPlanes = { Cv.GetImage(imgH), Cv.GetImage(imgS), Cv.GetImage(imgV) };

                        hist.Calc(hsvPlanes, false, null); // Call hist function (no accumulatation, no mask)

                        // Do we need to normalize??
                        hist.GetMinMaxValue(out minValue, out maxValue);
                        // Scale the histogram to unity height
                        hist.Normalize(_imageHSV.Width * _imageHSV.Height * hist.Dim * hueMax / maxValue);
                    }

        return(hist);  // Return the histogram
    }