public void TestHOG1() { if (CudaInvoke.HasCuda) { using (CudaHOG hog = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8), 9)) using (Mat pedestrianDescriptor = hog.GetDefaultPeopleDetector()) using (Image <Bgr, Byte> image = new Image <Bgr, byte>("pedestrian.png")) { hog.SetSVMDetector(pedestrianDescriptor); //hog.GroupThreshold = 0; Stopwatch watch = Stopwatch.StartNew(); Rectangle[] rects; using (CudaImage <Bgr, Byte> CudaImage = new CudaImage <Bgr, byte>(image)) using (CudaImage <Bgra, Byte> gpuBgra = CudaImage.Convert <Bgra, Byte>()) using (VectorOfRect vRect = new VectorOfRect()) { hog.DetectMultiScale(gpuBgra, vRect); rects = vRect.ToArray(); } watch.Stop(); Assert.AreEqual(1, rects.Length); foreach (Rectangle rect in rects) { image.Draw(rect, new Bgr(Color.Red), 1); } Trace.WriteLine(String.Format("HOG detection time: {0} ms", watch.ElapsedMilliseconds)); //ImageViewer.Show(image, String.Format("Detection Time: {0}ms", watch.ElapsedMilliseconds)); } } }
/// <summary> /// Find the pedestrian in the image /// </summary> /// <param name="image">The image</param> /// <returns>The region where pedestrians are detected</returns> public static Rectangle[] Find(IInputArray image, HOGDescriptor hog, CudaHOG hogCuda = null) { Rectangle[] regions; using (InputArray iaImage = image.GetInputArray()) { //if the input array is a GpuMat //check if there is a compatible Cuda device to run pedestrian detection if (iaImage.Kind == InputArray.Type.CudaGpuMat && hogCuda != null) { //this is the Cuda version using (GpuMat cudaBgra = new GpuMat()) using (VectorOfRect vr = new VectorOfRect()) { CudaInvoke.CvtColor(image, cudaBgra, ColorConversion.Bgr2Bgra); hogCuda.DetectMultiScale(cudaBgra, vr); regions = vr.ToArray(); } } else { //this is the CPU/OpenCL version MCvObjectDetection[] results = hog.DetectMultiScale(image); regions = new Rectangle[results.Length]; for (int i = 0; i < results.Length; i++) { regions[i] = results[i].Rect; } } return(regions); } }
/// <summary> /// Find the pedestrian in the image /// </summary> /// <param name="image">The image</param> /// <param name="processingTime">The pedestrian detection time in milliseconds</param> /// <returns>The region where pedestrians are detected</returns> public static Rectangle[] Find(Mat image, bool tryUseCuda, bool tryUseOpenCL, out long processingTime) { Stopwatch watch; Rectangle[] regions; #if !(IOS || NETFX_CORE) //check if there is a compatible Cuda device to run pedestrian detection if (tryUseCuda && CudaInvoke.HasCuda) { //this is the Cuda version using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8))) { des.SetSVMDetector(des.GetDefaultPeopleDetector()); watch = Stopwatch.StartNew(); using (GpuMat cudaBgr = new GpuMat(image)) using (GpuMat cudaBgra = new GpuMat()) using (VectorOfRect vr = new VectorOfRect()) { CudaInvoke.CvtColor(cudaBgr, cudaBgra, ColorConversion.Bgr2Bgra); des.DetectMultiScale(cudaBgra, vr); regions = vr.ToArray(); } } } else #endif { //Many opencl functions require opencl compatible gpu devices. //As of opencv 3.0-alpha, opencv will crash if opencl is enable and only opencv compatible cpu device is presented //So we need to call CvInvoke.HaveOpenCLCompatibleGpuDevice instead of CvInvoke.HaveOpenCL (which also returns true on a system that only have cpu opencl devices). CvInvoke.UseOpenCL = tryUseOpenCL && CvInvoke.HaveOpenCLCompatibleGpuDevice; //this is the CPU/OpenCL version using (HOGDescriptor des = new HOGDescriptor()) { des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector()); //load the image to umat so it will automatically use opencl is available UMat umat = image.ToUMat(AccessType.Read); watch = Stopwatch.StartNew(); MCvObjectDetection[] results = des.DetectMultiScale(umat); regions = new Rectangle[results.Length]; for (int i = 0; i < results.Length; i++) { regions[i] = results[i].Rect; } watch.Stop(); } } processingTime = watch.ElapsedMilliseconds; return(regions); }
/// <summary> /// Find the pedestrian in the image /// </summary> /// <param name="image">The image</param> /// <param name="processingTime">The pedestrian detection time in milliseconds</param> /// <returns>The region where pedestrians are detected</returns> public static Rectangle[] Find(Mat image, bool tryUseCuda, out long processingTime) { Stopwatch watch; Rectangle[] regions; #if !(__IOS__ || NETFX_CORE) //check if there is a compatible Cuda device to run pedestrian detection if (tryUseCuda && CudaInvoke.HasCuda) { //this is the Cuda version using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8))) { des.SetSVMDetector(des.GetDefaultPeopleDetector()); watch = Stopwatch.StartNew(); using (GpuMat cudaBgr = new GpuMat(image)) using (GpuMat cudaBgra = new GpuMat()) using (VectorOfRect vr = new VectorOfRect()) { CudaInvoke.CvtColor(cudaBgr, cudaBgra, ColorConversion.Bgr2Bgra); des.DetectMultiScale(cudaBgra, vr); regions = vr.ToArray(); } } } else #endif { //this is the CPU/OpenCL version using (HOGDescriptor des = new HOGDescriptor()) { des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector()); //load the image to umat so it will automatically use opencl is available UMat umat = image.ToUMat(AccessType.Read); watch = Stopwatch.StartNew(); MCvObjectDetection[] results = des.DetectMultiScale(umat); regions = new Rectangle[results.Length]; for (int i = 0; i < results.Length; i++) { regions[i] = results[i].Rect; } watch.Stop(); } } processingTime = watch.ElapsedMilliseconds; return(regions); }
/// <summary> /// Find the pedestrian in the image /// </summary> /// <param name="image">The image</param> /// <param name="processingTime">The processing time in milliseconds</param> /// <returns>The region where pedestrians are detected</returns> public static Rectangle[] Find(IInputArray image, out long processingTime) { Stopwatch watch; Rectangle[] regions; using (InputArray iaImage = image.GetInputArray()) { #if !(__IOS__ || NETFX_CORE) //if the input array is a GpuMat //check if there is a compatible Cuda device to run pedestrian detection if (iaImage.Kind == InputArray.Type.CudaGpuMat) { //this is the Cuda version using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8))) { des.SetSVMDetector(des.GetDefaultPeopleDetector()); watch = Stopwatch.StartNew(); using (GpuMat cudaBgra = new GpuMat()) using (VectorOfRect vr = new VectorOfRect()) { CudaInvoke.CvtColor(image, cudaBgra, ColorConversion.Bgr2Bgra); des.DetectMultiScale(cudaBgra, vr); regions = vr.ToArray(); } } } else #endif { //this is the CPU/OpenCL version using (HOGDescriptor des = new HOGDescriptor()) { des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector()); watch = Stopwatch.StartNew(); MCvObjectDetection[] results = des.DetectMultiScale(image); regions = new Rectangle[results.Length]; for (int i = 0; i < results.Length; i++) { regions[i] = results[i].Rect; } watch.Stop(); } } processingTime = watch.ElapsedMilliseconds; return(regions); } }
public List <IImage> ProcessFrame(IImage original) { Rectangle[] peopleRegion; using (InputArray iaImage = original.GetInputArray()) { #if !(__IOS__ || NETFX_CORE) //if the input array is a GpuMat //check if there is a compatible Cuda device to run pedestrian detection if (iaImage.Kind == InputArray.Type.CudaGpuMat) { //this is the Cuda version using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8))) { des.SetSVMDetector(des.GetDefaultPeopleDetector()); using (GpuMat cudaBgra = new GpuMat()) using (VectorOfRect vr = new VectorOfRect()) { CudaInvoke.CvtColor(original, cudaBgra, ColorConversion.Bgr2Bgra); des.DetectMultiScale(cudaBgra, vr); peopleRegion = vr.ToArray(); } } } else #endif { //this is the CPU/OpenCL version using (HOGDescriptor peopleDescriptor = new HOGDescriptor()) { peopleDescriptor.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector()); MCvObjectDetection[] peopleFound = peopleDescriptor .DetectMultiScale(original, 0, default(Size), default(Size), AdjustableParameters["Scale"].CurrentValue, AdjustableParameters["SimilarityThreshold"].CurrentValue, AdjustableParameters["MeanShiftGrouping"].CurrentValue == 1); peopleRegion = new Rectangle[peopleFound.Length]; for (int i = 0; i < peopleFound.Length; i++) { peopleRegion[i] = peopleFound[i].Rect; } } } IImage copy = CopyAndDraw(original, peopleRegion); return(new List <IImage> { copy }); } }
/// <summary> /// Initialize the pedestrian detection model /// </summary> /// <param name="onDownloadProgressChanged">Call back method during download</param> /// <param name="initOptions">Initialization options. None supported at the moment, any value passed will be ignored.</param> /// <returns>Asyn task</returns> public async Task Init(DownloadProgressChangedEventHandler onDownloadProgressChanged = null, Object initOptions = null) { _hog = new HOGDescriptor(); _hog.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector()); if (CudaInvoke.HasCuda) { _hogCuda = new CudaHOG( new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8)); _hogCuda.SetSVMDetector(_hogCuda.GetDefaultPeopleDetector()); } }
public void InitalizeBodyTracker() { if (!Global.canRunCuda) { return; } // Used when body identification with GPU Size winSize = new Size(64, 128); Size blockSize = new Size(16, 16); Size blockStride = new Size(8, 8); Size cellSize = new Size(8, 8); int nBins = 9; des = new CudaHOG(winSize, blockSize, blockStride, cellSize, nBins); des.HitThreshold = 0; des.GroupThreshold = 0; }
public async Task Init(DownloadProgressChangedEventHandler onDownloadProgressChanged = null, Object initOptions = null) #endif { _hog = new HOGDescriptor(); _hog.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector()); #if (UNITY_EDITOR || UNITY_IOS || UNITY_ANDROID || UNITY_STANDALONE) yield return(null); #else if (CudaInvoke.HasCuda) { _hogCuda = new CudaHOG( new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8)); _hogCuda.SetSVMDetector(_hogCuda.GetDefaultPeopleDetector()); } #endif }
public Rectangle[] Detect(Image <Gray, byte> grayframe) { using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8))) { des.SetSVMDetector(des.GetDefaultPeopleDetector()); using (GpuMat cudaBgra = new GpuMat()) { using (VectorOfRect vr = new VectorOfRect()) { //CudaInvoke.CvtColor(grayframe, cudaBgra, ColorConversion.Bgr2Bgra); cudaBgra.Upload(grayframe); //CudaInvoke.CvtColor(grayframe, cudaBgra, ColorConversion.Gray2Bgra); des.DetectMultiScale(cudaBgra, vr); var regions = vr.ToArray(); return(regions); } } } }
public void TestHOG2() { if (CudaInvoke.HasCuda) { using (CudaHOG hog = new CudaHOG( new Size(48, 96), //winSize new Size(16, 16), //blockSize new Size(8, 8), //blockStride new Size(8, 8) //cellSize )) using (Mat pedestrianDescriptor = hog.GetDefaultPeopleDetector()) using (Image <Bgr, Byte> image = new Image <Bgr, byte>("pedestrian.png")) { //float[] pedestrianDescriptor = CudaHOGDescriptor.GetPeopleDetector48x96(); hog.SetSVMDetector(pedestrianDescriptor); Stopwatch watch = Stopwatch.StartNew(); Rectangle[] rects; using (GpuMat cudaImage = new GpuMat(image)) using (GpuMat gpuBgra = new GpuMat()) using (VectorOfRect vRect = new VectorOfRect()) { CudaInvoke.CvtColor(cudaImage, gpuBgra, ColorConversion.Bgr2Bgra); hog.DetectMultiScale(gpuBgra, vRect); rects = vRect.ToArray(); } watch.Stop(); //Assert.AreEqual(1, rects.Length); foreach (Rectangle rect in rects) { image.Draw(rect, new Bgr(Color.Red), 1); } Trace.WriteLine(String.Format("HOG detection time: {0} ms", watch.ElapsedMilliseconds)); //ImageViewer.Show(image, String.Format("Detection Time: {0}ms", watch.ElapsedMilliseconds)); } } }